
UNCLASSIFIED

Crunchy Data Postgres 16 Security Technical
Implementation Guide

Version: 1
Release: 1

13 Jun 2024

XSL Release 1/25/2022 Sort by: STIGID
Description: This Security Technical Implementation Guide is published as a tool to improve the security of
Department of Defense (DOD) information systems. The requirements are derived from the National Institute of
Standards and Technology (NIST) 800-53 and related documents. Comments or proposed revisions to this
document should be sent via email to the following address: disa.stig_spt@mail.mil.

Group ID (Vulid): V-261857
Group Title: SRG-APP-000001-DB-000031
Rule ID: SV-261857r1000976_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000100

Rule Title: PostgreSQL must limit the number of concurrent sessions to an organization-defined number per user
for all accounts and/or account types.

Vulnerability Discussion: Database management includes the ability to control the number of users and user
sessions using PostgreSQL. Unlimited concurrent connections to PostgreSQL could allow a successful denial-of-
service (DoS) attack by exhausting connection resources; and a system can also fail or be degraded by an
overload of legitimate users. Limiting the number of concurrent sessions per user is helpful in reducing these
risks.

This requirement addresses concurrent session control for a single account. It does not address concurrent
sessions by a single user via multiple system accounts; and it does not deal with the total number of sessions
across all accounts.

The capability to limit the number of concurrent sessions per user must be configured in or added to PostgreSQL
(for example, by use of a log on trigger), when this is technically feasible. Note that it is not sufficient to limit
sessions via a web server or application server alone, because legitimate users and adversaries can potentially
connect to PostgreSQL by other means.

The organization will need to define the maximum number of concurrent sessions by account type, by account, or
a combination thereof. In deciding on the appropriate number, it is important to consider the work requirements
of the various types of users. For example, two might be an acceptable limit for general users accessing the
database via an application; but 10 might be too few for a database administrator using a database management
GUI tool, where each query tab and navigation pane may count as a separate session.

(Sessions may also be referred to as connections or logons, which for the purposes of this requirement are
synonyms).

Check Content:
To check the total amount of connections allowed by the database, as the database administrator, run the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW max_connections"

If the total amount of connections is greater than documented by an organization, this is a finding.

To check the amount of connections allowed for each role, as the database administrator, run the following SQL:

$ sudo su - postgres
$ psql -c "SELECT rolname, rolconnlimit
FROM pg_roles
WHERE rolname NOT IN (
'pg_database_owner',
'pg_read_all_data',
'pg_write_all_data',
'pg_monitor',
'pg_read_all_settings',
'pg_read_all_stats',
'pg_stat_scan_tables',
'pg_read_server_files',
'pg_write_server_files',

'pg_execute_server_program',
'pg_signal_backend',
'pg_checkpoint',
'pg_use_reserved_connections',
'pg_create_subscription');"

If any roles have more connections configured than documented, this is a finding. A value of "-1" indicates
Unlimited and is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To configure the maximum amount of connections allowed to the database, as the database administrator (shown
here as "postgres") change the following in postgresql.conf (the value 10 is an example; set the value to suit local
conditions):

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
max_connections = 10

Restart the database:

$ sudo systemctl restart postgresql-${PGVER?}

To limit the amount of connections allowed by a specific role, as the database administrator, run the following
SQL:

$ psql -c "ALTER ROLE <rolname> CONNECTION LIMIT 1";

CCI: CCI-000054

Group ID (Vulid): V-261858
Group Title: SRG-APP-000023-DB-000001
Rule ID: SV-261858r1000953_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-000200
Rule Title: PostgreSQL must integrate with an organization-level authentication/access mechanism providing
account management and automation for all users, groups, roles, and any other principals.

Vulnerability Discussion: Enterprise environments make account management for applications and databases
challenging and complex. A manual process for account management functions adds the risk of a potential
oversight or other error. Managing accounts for the same person in multiple places is inefficient and prone to
problems with consistency and synchronization.

A comprehensive application account management process that includes automation helps to ensure that accounts
designated as requiring attention are consistently and promptly addressed.

Examples include, but are not limited to, using automation to take action on multiple accounts designated as
inactive, suspended, or terminated, or by disabling accounts located in noncentralized account stores, such as
multiple servers. Account management functions can also include assignment of group or role membership;
identifying account type; specifying user access authorizations (i.e., privileges); account removal, update, or

termination; and administrative alerts. The use of automated mechanisms can include, for example, using email
or text messaging to notify account managers when users are terminated or transferred; using the information
system to monitor account usage; and using automated telephone notification to report atypical system account
usage.

PostgreSQL must be configured to automatically use organization-level account management functions, and
these functions must immediately enforce the organization's current account policy.

Automation may comprise differing technologies that when placed together contain an overall mechanism
supporting an organization's automated account management requirements.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

If all accounts are authenticated by the organization-level authentication/access mechanism, such as LDAP or
Kerberos and not by PostgreSQL, this is not a finding.

As the database administrator (shown here as "postgres"), review pg_hba.conf authentication file settings:

$ sudo su - postgres
$ cat ${PGDATA?}/pg_hba.conf

All records must use an auth-method of gss, sspi, ldap, or cert. For details on the specifics of these authentication
methods refer to: http://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html.

If there are any records with a different auth-method than gss, sspi, ldap, or cert, review the system
documentation for justification and approval of these records.

If there are any records with a different auth-method than gss, sspi, ldap, or cert, that are not documented and
approved, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

Integrate PostgreSQL security with an organization-level authentication/access mechanism providing account
management for all users, groups, roles, and any other principals.

As the database administrator (shown here as "postgres"), edit pg_hba.conf authentication file:

$ sudo su - postgres
$ vi ${PGDATA?}/pg_hba.conf

For each PostgreSQL-managed account that is not documented and approved, either transfer it to management by
the external mechanism, or document the need for it and obtain approval, as appropriate.

CCI: CCI-000015

Group ID (Vulid): V-261859
Group Title: SRG-APP-000033-DB-000084
Rule ID: SV-261859r1000582_rule

Severity: CAT I
Rule Version (STIG-ID): CD16-00-000300
Rule Title: PostgreSQL must enforce approved authorizations for logical access to information and system
resources in accordance with applicable access control policies.

Vulnerability Discussion: Authentication with a DOD-approved PKI certificate does not necessarily imply
authorization to access PostgreSQL. To mitigate the risk of unauthorized access to sensitive information by
entities that have been issued certificates by DOD-approved PKIs, all DOD systems, including databases, must
be properly configured to implement access control policies.

Successful authentication must not automatically give an entity access to an asset or security boundary.
Authorization procedures and controls must be implemented to ensure each authenticated entity also has a
validated and current authorization. Authorization is the process of determining whether an entity, once
authenticated, is permitted to access a specific asset. Information systems use access control policies and
enforcement mechanisms to implement this requirement.

Access control policies include identity-based policies, role-based policies, and attribute-based policies. Access
enforcement mechanisms include access control lists, access control matrices, and cryptography. These policies
and mechanisms must be employed by the application to control access between users (or processes acting on
behalf of users) and objects (e.g., devices, files, records, processes, programs, and domains) in the information
system.

This requirement is applicable to access control enforcement applications, a category that includes database
management systems. If PostgreSQL does not follow applicable policy when approving access, it may be in
conflict with networks or other applications in the information system. This may result in users either gaining or
being denied access inappropriately and in conflict with applicable policy.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

From the system security plan or equivalent documentation, determine the appropriate permissions on database
objects for each kind (group role) of user. If this documentation is missing, this is a finding.

As the database administrator (shown here as "postgres"), check the privileges of all roles in the database by
running the following SQL:

$ sudo su - postgres
$ psql -c '\du'

Review all roles and their associated privileges. If any roles' privileges exceed those documented, this is a
finding.

As the database administrator (shown here as "postgres"), check the configured privileges for tables and columns
by running the following SQL:

$ sudo su - postgres
$ psql -c '\dp'

Review all access privileges and column access privileges list. If any roles' privileges exceed those documented,
this is a finding.

As the database administrator (shown here as "postgres"), check the configured authentication settings in
pg_hba.conf:

$ sudo su - postgres
$ cat ${PGDATA?}/pg_hba.conf

Review all entries and their associated authentication methods. If any entries do not have their documented
authentication requirements, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

Create and/or maintain documentation of each group role's appropriate permissions on database objects.

Implement these permissions in the database and remove any permissions that exceed those documented.

The following are examples of how to use role privileges in PostgreSQL to enforce access controls. For a
complete list of privileges, refer to the official documentation: https://www.postgresql.org/docs/current/static/sql-
createrole.html.

Roles Example 1

The following example demonstrates how to create an admin role with CREATEDB and CREATEROLE
privileges.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "CREATE ROLE admin WITH CREATEDB CREATEROLE"

Roles Example 2

The following example demonstrates how to create a role with a password that expires and makes the role a
member of the "admin" group.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "CREATE ROLE joe LOGIN ENCRYPTED PASSWORD 'stig_2024' VALID UNTIL '2024-09-20' IN
ROLE admin"

Roles Example 3

The following demonstrates how to revoke privileges from a role using REVOKE.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "REVOKE admin FROM joe"

Roles Example 4

The following demonstrates how to alter privileges in a role using ALTER.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "ALTER ROLE joe NOLOGIN"

The following are examples of how to use grant privileges in PostgreSQL to enforce access controls on objects.
For a complete list of privileges, refer to the official documentation:
https://www.postgresql.org/docs/current/static/sql-grant.html.

Grant Example 1

The following example demonstrates how to grant INSERT on a table to a role.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "GRANT SELECT ON stig_test TO joe"

Grant Example 2

The following example demonstrates how to grant ALL PRIVILEGES on a table to a role.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "GRANT ALL PRIVILEGES ON stig_test TO joe"

Grant Example 3

The following example demonstrates how to grant a role to a role.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "GRANT admin TO joe"

Revoke Example 1

The following example demonstrates how to revoke access from a role.

As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "REVOKE admin FROM joe"

To change authentication requirements for the database, as the database administrator (shown here as "postgres"),
edit pg_hba.conf:

$ sudo su - postgres

$ vi ${PGDATA?}/pg_hba.conf

Edit authentication requirements to the organizational requirements. Refer to the official documentation for the
complete list of options for authentication: http://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html.

After changes to pg_hba.conf, reload the server:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000213

Group ID (Vulid): V-261860
Group Title: SRG-APP-000080-DB-000063
Rule ID: SV-261860r1000977_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000400
Rule Title: PostgreSQL must protect against a user falsely repudiating having performed organization-defined
actions.

Vulnerability Discussion: Nonrepudiation of actions taken is required to maintain data integrity. Examples of
particular actions taken by individuals include creating information, sending a message, approving information
(e.g., indicating concurrence or signing a contract), and receiving a message.

Nonrepudiation protects against later claims by a user of not having created, modified, or deleted a particular data
item or collection of data in the database.

In designing a database, the organization must define the types of data and the user actions that must be protected
from repudiation. The implementation must then include building audit features into the application data tables
and configuring PostgreSQL audit tools to capture the necessary audit trail. Design and implementation must
ensure that applications pass individual user identification to PostgreSQL, even where the application connects to
PostgreSQL with a standard, shared account.

Check Content:
As the database administrator, review the current log_line_prefix settings by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

If log_line_prefix does not contain at least '< %m %a %u %d %r %p >', this is a finding.

Review the current shared_preload_libraries settings by running the following SQL:

$ psql -c "SHOW shared_preload_libraries"

If shared_preload_libraries does not contain "pgaudit", this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure the database to supply additional auditing information to protect against a user falsely repudiating
having performed organization-defined actions.

Using "pgaudit", PostgreSQL can be configured to audit these requests. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

Modify the configuration of audit logs to include details identifying the individual user:

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Extra parameters can be added to the setting log_line_prefix to identify the user:

log_line_prefix = '< %m %a %u %d %r %p >'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

Use accounts assigned to individual users. Where the application connects to PostgreSQL using a standard,
shared account, ensure it also captures the individual user identification and passes it to PostgreSQL.

CCI: CCI-000166

Group ID (Vulid): V-261861
Group Title: SRG-APP-000089-DB-000064
Rule ID: SV-261861r1000588_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000500
Rule Title: PostgreSQL must provide audit record generation capability for DOD-defined auditable events within
all DBMS/database components.

Vulnerability Discussion: Without the capability to generate audit records, it would be difficult to establish,
correlate, and investigate the events relating to an incident or identify those responsible for one.

Audit records can be generated from various components within PostgreSQL (e.g., process, module). Certain
specific application functionalities may be audited as well. The list of audited events is the set of events for which
audits are to be generated. This set of events is typically a subset of the list of all events for which the system is
capable of generating audit records.

DOD has defined the list of events for which PostgreSQL will provide an audit record generation capability as
the following:

(i) Successful and unsuccessful attempts to access, modify, or delete privileges, security objects, security levels,
or categories of information (e.g., classification levels);

(ii) Access actions, such as successful and unsuccessful logon attempts, privileged activities, or other system-
level access, starting and ending time for user access to the system, concurrent logons from different
workstations, successful and unsuccessful accesses to objects, all program initiations, and all direct access to the
information system; and

(iii) All account creation, modification, disabling, and termination actions.

Organizations may define additional events requiring continuous or ad hoc auditing.

Check Content:
Note: The following instructions use the PGLOG environment variables. Refer to supplementary content
APPENDIX-I for instructions on configuring PGVER.

Check PostgreSQL audit logs to determine whether organization-defined auditable events are being audited by
the system.

For example, if the organization defines 'CREATE TABLE' as an auditable event, issuing the following command
should return a result:

$ sudo su - postgres
$ psql -c "CREATE TABLE example (id int)"
$ grep 'AUDIT:.*,CREATE TABLE.*example' ${PGLOG?}/<latest_log>
$ psql -c 'DROP TABLE example;'

If organization-defined auditable events are not being audited, this is a finding.

Fix Text: Configure PostgreSQL to generate audit records for at least the DOD minimum set of events.

Using "pgaudit", PostgreSQL can be configured to audit these requests. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

CCI: CCI-000169

Group ID (Vulid): V-261862
Group Title: SRG-APP-000090-DB-000065
Rule ID: SV-261862r1000591_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000600
Rule Title: PostgreSQL must allow only the information system security manager (ISSM), or individuals or roles
appointed by the ISSM, to select which events are to be audited.

Vulnerability Discussion: Without the capability to restrict which roles and individuals can select which events

are audited, unauthorized personnel may be able to prevent or interfere with the auditing of critical events.

Suppression of auditing could permit an adversary to evade detection.

Misconfigured audits can degrade the system's performance by overwhelming the audit log. Misconfigured audits
may also make it more difficult to establish, correlate, and investigate the events relating to an incident or
identify those responsible for one.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

Check PostgreSQL settings and documentation to determine whether designated personnel are able to select
which auditable events are being audited.

As the database administrator (shown here as "postgres"), verify the permissions for PGDATA:

$ ls -la ${PGDATA?}

If anything in PGDATA is not owned by the database administrator, this is a finding.

As the database administrator, run the following SQL:

$ sudo su - postgres
$ psql -c "\du"

Review the role permissions, if any role is listed as superuser but should not have that access, this is a finding.

Fix Text: Configure PostgreSQL's settings to allow designated personnel to select which auditable events are
audited.

Using pgaudit allows administrators the flexibility to choose what they log. For an overview of the capabilities of
pgaudit, refer to https://github.com/pgaudit/pgaudit.

Refer to supplementary content APPENDIX-B for documentation on installing pgaudit.

Refer to supplementary content APPENDIX-C for instructions on enabling logging. Only
administrators/superuser can change PostgreSQL configurations. Access to the database administrator must be
limited to designated personnel only.

To ensure that postgresql.conf is owned by the database owner:

$ chown postgres:postgres ${PGDATA?}/postgresql.conf
$ chmod 600 ${PGDATA?}/postgresql.conf

CCI: CCI-000171

Group ID (Vulid): V-261863
Group Title: SRG-APP-000091-DB-000066
Rule ID: SV-261863r1000954_rule
Severity: CAT II

Rule Version (STIG-ID): CD16-00-000700
Rule Title: PostgreSQL must be able to generate audit records when privileges/permissions are retrieved.

Vulnerability Discussion: Under some circumstances, it may be useful to monitor who/what is reading
privilege/permission/role information. Therefore, it must be possible to configure auditing to do this.
PostgreSQLs typically make such information available through views or functions.

This requirement addresses explicit requests for privilege/permission/role membership information. It does not
refer to the implicit retrieval of privileges/permissions/role memberships that PostgreSQL continually performs
to determine if any and every action on the database is permitted.

Check Content:
Note: The following instructions use the PGLOG environment variable. Refer to supplementary content
APPENDIX-I for instructions on configuring PGLOG.

As the database administrator (shown here as "postgres"), check if pgaudit is enabled by running the following
SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If pgaudit is not found in the results, this is a finding.

As the database administrator (shown here as "postgres"), list all role memberships for the database:

$ sudo su - postgres
$ psql -c "\du"

Verify the query was logged:

$ sudo su - postgres
$ cat ${PGLOG?}/<latest_log>

This should, as an example, return (among other rows):
< 2024-02-01 19:13:38.276 UTC psql postgres postgres [local] 15639 >LOG: duration: 29.932 ms statement:
SELECT r.rolname, r.rolsuper, r.rolinherit,
 r.rolcreaterole, r.rolcreatedb, r.rolcanlogin,
 r.rolconnlimit, r.rolvaliduntil
 , r.rolreplication
 , r.rolbypassrls
 FROM pg_catalog.pg_roles r
 WHERE r.rolname !~ '^pg_'
 ORDER BY 1;

If audit records are not produced, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log_catalog = 'on'
pgaudit.log = 'read'

Note: For this requirement the pgaudit.log must contain 'read' however APPENDIX-C suggests setting
pgaudit.log='ddl, role, read, write' to fulfill all requirements.

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261864
Group Title: SRG-APP-000091-DB-000325
Rule ID: SV-261864r1000597_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000800
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to retrieve
privileges/permissions occur.

Vulnerability Discussion: Under some circumstances, it may be useful to monitor who/what is reading
privilege/permission/role information. Therefore, it must be possible to configure auditing to do this.
PostgreSQLs typically make such information available through views or functions.

This requirement addresses explicit requests for privilege/permission/role membership information. It does not
refer to the implicit retrieval of privileges/permissions/role memberships that PostgreSQL continually performs
to determine if any and every action on the database is permitted.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGLOG environment variables. Refer to supplementary content
APPENDIX-I for instructions on configuring PGLOG.

As the database administrator (shown here as "postgres"), create a role "bob" by running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob"

Attempt to retrieve information from the pg_authid table:

$ psql -c "SET ROLE bob; SELECT * FROM pg_authid"
$ psql -c "DROP ROLE bob;"

As the database administrator (shown here as "postgres"), verify the event was logged in PGLOG:

$ sudo su - postgres
$ cat ${PGLOG?}/<latest_log>
< 2024-02-13 16:49:58.864 UTC postgres postgres ERROR: > permission denied for relation pg_authid
< 2024-02-13 16:49:58.864 UTC postgres postgres STATEMENT: > SELECT * FROM pg_authid

If the above steps cannot verify that audit records are produced when PostgreSQL denies retrieval of
privileges/permissions/role memberships, this is a finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to access privileges occur.

All denials are logged if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-000172

Group ID (Vulid): V-261865
Group Title: SRG-APP-000092-DB-000208
Rule ID: SV-261865r1000600_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-000900
Rule Title: PostgreSQL must initiate session auditing upon startup.

Vulnerability Discussion: Session auditing is for use when a user's activities are under investigation. To ensure
the capture of all activity during those periods when session auditing is in use, it needs to be in operation for the
whole time PostgreSQL is running.

Check Content:
As the database administrator (shown here as "postgres"), check the current settings by running the following
SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If pgaudit is not in the current setting, this is a finding.

As the database administrator (shown here as "postgres"), check the current settings by running the following
SQL:

$ psql -c "SHOW log_destination"

If stderr or syslog are not in the current setting, this is a finding.

Fix Text: Configure PostgreSQL to enable auditing.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

For session logging, using pgaudit is recommended. For instructions on how to setup pgaudit, refer to
supplementary content APPENDIX-B.

CCI: CCI-001464

Group ID (Vulid): V-261866
Group Title: SRG-APP-000095-DB-000039
Rule ID: SV-261866r1000603_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001000
Rule Title: PostgreSQL must produce audit records containing sufficient information to establish what type of
events occurred.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without establishing what type of event occurred, it would be difficult to establish, correlate, and investigate the
events relating to an incident or identify those responsible for one.

Audit record content that may be necessary to satisfy the requirement of this policy includes, for example, time
stamps, user/process identifiers, event descriptions, success/fail indications, filenames involved, and access
control or flow control rules invoked.

Associating event types with detected events in the application and audit logs provides a means of investigating
an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured
application.

PostgreSQL is capable of a range of actions on data stored within the database. It is important, for accurate
forensic analysis, to know exactly what actions were performed. This requires specific information regarding the
event type an audit record is referring to. If event type information is not recorded and stored with the audit
record, the record itself is of very limited use.

Check Content:
As the database administrator (shown here as "postgres"), verify the current log_line_prefix setting:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

Verify that the current settings are appropriate for the organization.

The following is what is possible for logged information:

%a = application name
%u = user name
%d = database name
%r = remote host and port
%h = remote host
%p = process ID
%t = timestamp without milliseconds
%m = timestamp with milliseconds
%i = command tag
%e = SQL state
%c = session ID
%l = session line number

%s = session start timestamp
%v = virtual transaction ID
%x = transaction ID (0 if none)
%q = stop here in non-session processes

If the audit record does not log events required by the organization, this is a finding.

Verify the current settings of log_connections and log_disconnections by running the following SQL:

$ psql -c "SHOW log_connections"
$ psql -c "SHOW log_disconnections"

If either setting is off, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

If logging is enabled the following configurations must be made to log connections, date/time, username and
session identifier.

Edit the postgresql.conf file as a privileged user:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters based on the organization's needs (minimum requirements are as follows):

log_connections = on
log_disconnections = on
log_line_prefix = '< %m %u %d %c: >'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000130

Group ID (Vulid): V-261867
Group Title: SRG-APP-000096-DB-000040
Rule ID: SV-261867r1000955_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001100
Rule Title: PostgreSQL must produce audit records containing time stamps to establish when the events
occurred.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without establishing when events occurred, it is impossible to establish, correlate, and investigate the events
relating to an incident.

To compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to
know the date and time when events occurred.

Associating the date and time with detected events in the application and audit logs provides a means of
investigating an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly
configured application.

PostgreSQL is capable of a range of actions on data stored within the database. It is important, for accurate
forensic analysis, to know exactly when specific actions were performed. This requires the date and time an audit
record is referring to. If date and time information is not recorded and stored with the audit record, the record
itself is of very limited use.

Check Content:
As the database administrator (usually postgres), run the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

If the query result does not contain "%m", this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Logging must be enabled to capture timestamps. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

If logging is enabled, the following configurations must be made to log events with timestamps:

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add %m to log_line_prefix to enable timestamps with milliseconds:

log_line_prefix = '< %m >'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000131

Group ID (Vulid): V-261868
Group Title: SRG-APP-000097-DB-000041
Rule ID: SV-261868r1000609_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001200
Rule Title: PostgreSQL must produce audit records containing sufficient information to establish where the
events occurred.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without establishing where events occurred, it is impossible to establish, correlate, and investigate the events
relating to an incident.

In order to compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel
to know where events occurred, such as application components, modules, session identifiers, filenames, host
names, and functionality.

Associating information about where the event occurred within the application provides a means of investigating
an attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured
application.

Check Content:
As the database administrator (shown here as "postgres"), check the current log_line_prefix setting by running
the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

If log_line_prefix does not contain "%m %u %d %s", this is a finding.

Fix Text:
$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Extra parameters can be added to the setting log_line_prefix to log application related information:

%a = application name
%u = user name
%d = database name
%r = remote host and port
%p = process ID
%m = timestamp with milliseconds
%i = command tag
%s = session startup
%e = SQL state

For example:

log_line_prefix = '< %m %a %u %d %r %p %i %e %s>'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000132

Group ID (Vulid): V-261869
Group Title: SRG-APP-000098-DB-000042
Rule ID: SV-261869r1000956_rule
Severity: CAT II

Rule Version (STIG-ID): CD16-00-001300
Rule Title: PostgreSQL must produce audit records containing sufficient information to establish the sources
(origins) of the events.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without establishing the source of the event, it is impossible to establish, correlate, and investigate the events
relating to an incident.

To compile an accurate risk assessment and provide forensic analysis, it is essential for security personnel to
know where events occurred, such as application components, modules, session identifiers, filenames, host
names, and functionality.

In addition to logging where events occur within the application, the application must also produce audit records
that identify the application itself as the source of the event.

Associating information about the source of the event within the application provides a means of investigating an
attack; recognizing resource utilization or capacity thresholds; or identifying an improperly configured
application.

Check Content:
Check PostgreSQL settings and existing audit records to verify information specific to the source (origin) of the
event is being captured and stored with audit records.

As the database administrator (usually postgres) check the current log_line_prefix and log_hostname setting by
running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"
$ psql -c "SHOW log_hostname"

For a complete list of extra information that can be added to log_line_prefix, refer to the official documentation:
https://www.postgresql.org/docs/current/static/runtime-config-logging.html#GUC-LOG-LINE-PREFIX.

If the current settings do not provide enough information regarding the source of the event, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

If logging is enabled, the following configurations can be made to log the source of an event.

As the database administrator, edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Log Line Prefix

Extra parameters can be added to the setting log_line_prefix to log source of event:

%a = application name

%u = user name
%d = database name
%r = remote host and port
%p = process ID
%m = timestamp with milliseconds

For example:
log_line_prefix = '< %m %a %u %d %r %p %m >'

Log Hostname

By default, only IP address is logged. To also log the hostname, the following parameter can also be set in
postgresql.conf:

log_hostname = on

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000133

Group ID (Vulid): V-261870
Group Title: SRG-APP-000099-DB-000043
Rule ID: SV-261870r1000615_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001400
Rule Title: PostgreSQL must produce audit records containing sufficient information to establish the outcome
(success or failure) of the events.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without information about the outcome of events, security personnel cannot make an accurate assessment as to
whether an attack was successful or if changes were made to the security state of the system.

Event outcomes can include indicators of event success or failure and event-specific results (e.g., the security
state of the information system after the event occurred). As such, they also provide a means to measure the
impact of an event and help authorized personnel to determine the appropriate response.

Check Content:
Note: The following instructions use the PGLOG environment variables. Refer to supplementary content
APPENDIX-I for instructions on configuring them.

As a database administrator (shown here as "postgres"), create a table, insert a value, alter the table and update
the table by running the following SQL:

CREATE TABLE stig_test(id INT);
INSERT INTO stig_test(id) VALUES (0);
ALTER TABLE stig_test ADD COLUMN name text;
UPDATE stig_test SET id = 1 WHERE id = 0;

As a user without access to the stig_test table, run the following SQL:

INSERT INTO stig_test(id) VALUES (1);
ALTER TABLE stig_test DROP COLUMN name;
UPDATE stig_test SET id = 0 WHERE id = 1;

The prior SQL should generate errors:

ERROR: permission denied for relation stig_test
ERROR: must be owner of relation stig_test
ERROR: permission denied for relation stig_test

As the database administrator, drop the test table by running the following SQL:

DROP TABLE stig_test;

Verify the errors were logged:

$ sudo su - postgres
$ cat ${PGLOG?}/<latest_logfile>
< 2024-02-23 14:51:31.103 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local] >LOG:
AUDIT: SESSION,1,1,DDL,CREATE TABLE,,,CREATE TABLE stig_test(id INT);,<none>
< 2024-02-23 14:51:44.835 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local] >LOG:
AUDIT: SESSION,2,1,WRITE,INSERT,,,INSERT INTO stig_test(id) VALUES (0);,<none>
< 2024-02-23 14:53:25.805 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local] >LOG:
AUDIT: SESSION,3,1,DDL,ALTER TABLE,,,ALTER TABLE stig_test ADD COLUMN name text;,<none>
< 2024-02-23 14:53:54.381 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local] >LOG:
AUDIT: SESSION,4,1,WRITE,UPDATE,,,UPDATE stig_test SET id = 1 WHERE id = 0;,<none>
< 2024-02-23 14:54:20.832 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>ERROR: permission denied for relation stig_test
< 2024-02-23 14:54:20.832 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>STATEMENT: INSERT INTO stig_test(id) VALUES (1);
< 2024-02-23 14:54:41.032 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>ERROR: must be owner of relation stig_test
< 2024-02-23 14:54:41.032 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>STATEMENT: ALTER TABLE stig_test DROP COLUMN name;
< 2024-02-23 14:54:54.378 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>ERROR: permission denied for relation stig_test
< 2024-02-23 14:54:54.378 UTC psql postgres postgres 570bf22a.3af2 2024-04-11 14:51:22 EDT [local]
>STATEMENT: UPDATE stig_test SET id = 0 WHERE id = 1;
< 2024-02-23 14:55:23.723 UTC psql postgres postgres 570bf307.3b0a 2024-04-11 14:55:03 EDT [local]
>LOG: AUDIT: SESSION,1,1,DDL,DROP TABLE,,,DROP TABLE stig_test;,<none>

If audit records exist without the outcome of the event that occurred, this is a finding.

Fix Text: Using pgaudit, PostgreSQL can be configured to audit various facets of PostgreSQL. Refer to
supplementary content APPENDIX-B for documentation on installing pgaudit.

All errors, denials, and unsuccessful requests are logged if logging is enabled. Refer to supplementary content
APPENDIX-C for documentation on enabling logging.

Note: The following instructions use the PGDATA and PGVER environment variables. Refer to APPENDIX-F

for instructions on configuring PGDATA and APPENDIX-H for PGVER.

With pgaudit and logging enabled, set the configuration settings in postgresql.conf, as the database administrator
(shown here as "postgres"), to the following:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
pgaudit.log_catalog='on'
pgaudit.log_level='log'
pgaudit.log_parameter='on'
pgaudit.log_statement_once='off'
pgaudit.log='ddl, role, read, write'

Tune the following logging configurations in postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_line_prefix = '< %m %u %d %e: >'
log_error_verbosity = default

As the system administrator, restart PostgreSQL:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000134

Group ID (Vulid): V-261871
Group Title: SRG-APP-000100-DB-000201
Rule ID: SV-261871r1000618_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001500
Rule Title: PostgreSQL must produce audit records containing sufficient information to establish the identity of
any user/subject or process associated with the event.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Without information that establishes the identity of the subjects (i.e., users or processes acting on behalf of users)
associated with the events, security personnel cannot determine responsibility for the potentially harmful event.

Identifiers (if authenticated or otherwise known) include, but are not limited to, user database tables, primary key
values, usernames, or process identifiers.

Check Content:
Check PostgreSQL settings and existing audit records to verify a username associated with the event is being
captured and stored with the audit records. If audit records exist without specific user information, this is a
finding.

As the database administrator (shown here as "postgres"), verify the current setting of log_line_prefix by running
the following SQL:

$ sudo su - postgres

$ psql -c "SHOW log_line_prefix"

If log_line_prefix does not contain %m, %u, %d, %p, %r, %a, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Logging must be enabled to capture the identity of any user/subject or process associated with an event. To
ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

To enable username, database name, process ID, remote host/port and application name in logging, as the
database administrator (shown here as "postgres"), edit the following in postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_line_prefix = '< %m %u %d %p %r %a >'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001487

Group ID (Vulid): V-261872
Group Title: SRG-APP-000101-DB-000044
Rule ID: SV-261872r1000621_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001600
Rule Title: PostgreSQL must include additional, more detailed, organization-defined information in the audit
records for audit events identified by type, location, or subject.

Vulnerability Discussion: Information system auditing capability is critical for accurate forensic analysis.
Reconstruction of harmful events or forensic analysis is not possible if audit records do not contain enough
information. To support analysis, some types of events will need information to be logged that exceeds the basic
requirements of event type, time stamps, location, source, outcome, and user identity. If additional information is
not available, it could negatively impact forensic investigations into user actions or other malicious events.

The organization must determine what additional information is required for complete analysis of the audited
events. The additional information required is dependent on the type of information (e.g., sensitivity of the data
and the environment within which it resides). At a minimum, the organization must employ either full-text
recording of privileged commands or the individual identities of users of shared accounts, or both. The
organization must maintain audit trails in sufficient detail to reconstruct events to determine the cause and impact
of compromise.

Examples of detailed information the organization may require in audit records are full-text recording of
privileged commands or the individual identities of shared account users.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
and APPENDIX-I for instructions on configuring them.

Review the system documentation to identify what additional information the organization has determined
necessary.

Check PostgreSQL settings by examining ${PGDATA?}/postgresql.conf to ensure additional auditing is
configured and then examine existing audit records in ${PGLOG?}/<latest.log> to verify that all organization-
defined additional, more detailed information is in the audit records for audit events identified by type, location,
or subject after executing SQL commands that fall under the additional audit classes.

If any additional information is defined and is not contained in the audit records, this is a finding.

Fix Text: Configure PostgreSQL audit settings to include all organization-defined detailed information in the
audit records for audit events identified by type, location, or subject.

Using pgaudit, PostgreSQL can be configured to audit these requests. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

CCI: CCI-000135

Group ID (Vulid): V-261873
Group Title: SRG-APP-000109-DB-000049
Rule ID: SV-261873r1000624_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001700
Rule Title: PostgreSQL must, by default, shut down upon audit failure, to include the unavailability of space for
more audit log records; or must be configurable to shut down upon audit failure.

Vulnerability Discussion: It is critical that when the DBMS is at risk of failing to process audit logs as required,
it take action to mitigate the failure. Audit processing failures include software/hardware errors; failures in the
audit capturing mechanisms; and audit storage capacity being reached or exceeded. Responses to audit failure
depend upon the nature of the failure mode.

When the need for system availability does not outweigh the need for a complete audit trail, PostgreSQL should
shut down immediately, rolling back all in-flight transactions.

Systems where audit trail completeness is paramount will most likely be at a lower MAC level than MAC I; the
final determination is the prerogative of the application owner, subject to Authorizing Official concurrence. In
any case, sufficient auditing resources must be allocated to avoid a shutdown in all but the most extreme
situations.

Check Content:
If the application owner has determined that the need for system availability outweighs the need for a complete
audit trail, this is Not Applicable.

Review the procedures, either manually and/or automated, for monitoring the space used by audit trail(s) and for
offloading audit records to a centralized log management system.

If the procedures do not exist, this is a finding.

If the procedures exist, request evidence that they are followed. If the evidence indicates that the procedures are

not followed, this is a finding.

If the procedures exist, inquire if the system has ever run out of audit trail space in the last two years or since the
last system upgrade, whichever is more recent. If it has run out of space in this period, and the procedures have
not been updated to compensate, this is a finding.

Fix Text: Modify PostgreSQL, OS, or third-party logging application settings to alert appropriate personnel
when a specific percentage of log storage capacity is reached.

CCI: CCI-000140

Group ID (Vulid): V-261874
Group Title: SRG-APP-000109-DB-000321
Rule ID: SV-261874r1000627_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-001800
Rule Title: PostgreSQL must be configurable to overwrite audit log records, oldest first (first-in-first-out [FIFO]),
in the event of unavailability of space for more audit log records.

Vulnerability Discussion: It is critical that when PostgreSQL is at risk of failing to process audit logs as
required, it take action to mitigate the failure. Audit processing failures include software/hardware errors; failures
in the audit capturing mechanisms; and audit storage capacity being reached or exceeded. Responses to audit
failure depend upon the nature of the failure mode.

When availability is an overriding concern, approved actions in response to an audit failure are as follows:

(i) If the failure was caused by the lack of audit record storage capacity, PostgreSQL must continue generating
audit records, if possible (automatically restarting the audit service if necessary), overwriting the oldest audit
records in a first-in-first-out manner.

(ii) If audit records are sent to a centralized collection server and communication with this server is lost or the
server fails, PostgreSQL must queue audit records locally until communication is restored or until the audit
records are retrieved manually. Upon restoration of the connection to the centralized collection server, action
should be taken to synchronize the local audit data with the collection server.

Systems where availability is paramount will most likely be MAC I; the final determination is the prerogative of
the application owner, subject to Authorizing Official concurrence. In any case, sufficient auditing resources must
be allocated to avoid audit data loss in all but the most extreme situations.

Check Content:
If the Authorizing Official (AO)-approved system documentation states that system availability takes precedence,
this requirement is Not Applicable.

If an externally managed and monitored partition or logical volume that can be grown dynamically is being used
for logging, this is not a finding.

If PostgreSQL is auditing to a directory that is not being actively checked for availability of disk space, and if a
tool, utility, script, or other mechanism is not being used to ensure sufficient disk space is available for the
creation of new audit logs, this is a finding.

If a tool, utility, script, or other mechanism is being used to rotate audit logs and oldest logs are not being

removed to ensure sufficient space for newest logs or oldest logs are not being replaced by newest logs, this is a
finding.

Fix Text: Establish a process with accompanying tools for monitoring available disk space and ensuring that
sufficient disk space is maintained to continue generating audit logs, overwriting the oldest existing records if
necessary.

CCI: CCI-000140

Group ID (Vulid): V-261875
Group Title: SRG-APP-000118-DB-000059
Rule ID: SV-261875r1000630_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002000
Rule Title: The audit information produced by PostgreSQL must be protected from unauthorized read access.

Vulnerability Discussion: If audit data were to become compromised, then competent forensic analysis and
discovery of the true source of potentially malicious system activity is difficult, if not impossible, to achieve. In
addition, access to audit records provides information an attacker could potentially use to their advantage.

To ensure the veracity of audit data, the information system and/or the application must protect audit information
from any and all unauthorized access. This includes read, write, copy, etc.

This requirement can be achieved through multiple methods which will depend upon system architecture and
design. Some commonly employed methods include ensuring log files enjoy the proper file system permissions
using file system protections and limiting log data location.

Additionally, applications with user interfaces to audit records should not allow for the unfettered manipulation
of or access to those records via the application. If the application provides access to the audit data, the
application becomes accountable for ensuring that audit information is protected from unauthorized access.

Audit information includes all information (e.g., audit records, audit settings, and audit reports) needed to
successfully audit information system activity.

Check Content:
Note: The following instructions use the PGLOG environment variable. Refer to supplementary content
APPENDIX-I for instructions on configuring PGLOG.

Review locations of audit logs, both internal to the database and database audit logs located at the operating
system level.

Verify appropriate controls and permissions exist to protect the audit information from unauthorized access.

syslog Logging

If PostgreSQL is configured to use syslog for logging, consult organization location and permissions for syslog
log files.

stderr Logging

As the database administrator (shown here as "postgres"), check the current log_file_mode configuration by

running the following:

Note: Consult the organization's documentation on acceptable log privileges.

$ sudo su - postgres
$ psql -c "SHOW log_file_mode"

If log_file_mode is not 600, this is a finding.

Verify the log files have the set permissions in ${PGLOG?}:

$ ls -l ${PGLOG?}/
total 32
-rw-------. 1 postgres postgres 0 Apr 8 00:00 postgresql-Fri.log
-rw-------. 1 postgres postgres 8288 Apr 11 17:36 postgresql-Mon.log
-rw-------. 1 postgres postgres 0 Apr 9 00:00 postgresql-Sat.log
-rw-------. 1 postgres postgres 0 Apr 10 00:00 postgresql-Sun.log
-rw-------. 1 postgres postgres 16212 Apr 7 17:05 postgresql-Thu.log
-rw-------. 1 postgres postgres 1130 Apr 6 17:56 postgresql-Wed.log

If logs with 600 permissions do not exist in ${PGLOG?}, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

syslog Logging

If PostgreSQL is configured to use syslog for logging, consult organization location and permissions for syslog
log files.

stderr Logging

If PostgreSQL is configured to use stderr for logging, permissions of the log files can be set in postgresql.conf.

As the database administrator (shown here as "postgres"), edit the following settings of logs in the
postgresql.conf file:

Note: Consult the organization's documentation on acceptable log privileges.

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_file_mode = 0600

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000162

Group ID (Vulid): V-261876
Group Title: SRG-APP-000119-DB-000060
Rule ID: SV-261876r1000978_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002100
Rule Title: The audit information produced by PostgreSQL must be protected from unauthorized modification.

Vulnerability Discussion: If audit data were to become compromised, competent forensic analysis and
discovery of the true source of potentially malicious system activity would be impossible to achieve.

To ensure the veracity of audit data, the information system and/or the application must protect audit information
from unauthorized modification.

This requirement can be achieved through multiple methods depending on system architecture and design. Some
commonly employed methods include ensuring log files have the proper file system permissions and limiting log
data locations.

Applications providing a user interface to audit data will leverage user permissions and roles identifying the user
accessing the data and the user's corresponding rights to make access decisions regarding the modification of
audit data.

Audit information includes all information (e.g., audit records, audit settings, and audit reports) needed to
successfully audit information system activity.

Modification of database audit data could mask the theft or unauthorized modification of sensitive data stored in
the database.

Check Content:
Review locations of audit logs, both internal to the database and database audit logs located at the operating
system level.

Verify there are appropriate controls and permissions to protect the audit information from unauthorized
modification.

Note: The following instructions use the PGLOG environment variable. Refer to supplementary content
APPENDIX-I for instructions on configuring PGLOG.

stderr Logging

If the PostgreSQL server is configured to use stderr for logging, the logs will be owned by the database owner
(usually postgres user) with a default permissions level of 0600. The permissions can be configured in
postgresql.conf.

To check the permissions for log files in postgresql.conf, as the database owner (shown here as "postgres"), run
the following command:

$ sudo su - postgres
$ psql -c "show log_file_mode;"

If the permissions are not 0600, this is a finding.

As the database owner (shown here as "postgres"), list the permissions of the logs:

$ sudo su - postgres
$ ls -la ${PGLOG?}

If logs are not owned by the database owner (shown here as "postgres") and are not the same permissions as
configured in postgresql.conf, this is a finding.

syslog Logging

If the PostgreSQL server is configured to use syslog for logging, consult the organization syslog setting for
permissions and ownership of logs.

Fix Text: To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA and APPENDIX-I for instructions on configuring PGLOG.

stderr Logging

With stderr logging enabled, as the database owner (shown here as "postgres"), set the following parameter in
postgresql.conf:

$ vi ${PGDATA?}/postgresql.conf
log_file_mode = 0600

To change the owner and permissions of the log files, run the following:

$ chown postgres:postgres ${PGDATA?}/${PGLOG?}
$ chmod 0700 ${PGDATA?}/${PGLOG?}
$ chmod 600 ${PGDATA?}/${PGLOG?}/*.log

syslog Logging

If PostgreSQL is configured to use syslog for logging, the log files must be configured to be owned by root with
0600 permissions.

$ chown root:root <log directory name>/<log_filename>
$ chmod 0700 <log directory name>
$ chmod 0600 <log directory name>/*.log

CCI: CCI-000163

Group ID (Vulid): V-261877
Group Title: SRG-APP-000120-DB-000061
Rule ID: SV-261877r1000968_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002200
Rule Title: The audit information produced by PostgreSQL must be protected from unauthorized deletion.

Vulnerability Discussion: If audit data were to become compromised, then competent forensic analysis and

discovery of the true source of potentially malicious system activity is impossible to achieve.

To ensure the veracity of audit data, the information system and/or the application must protect audit information
from unauthorized deletion. This requirement can be achieved through multiple methods which will depend upon
system architecture and design.

Some commonly employed methods include ensuring log files enjoy the proper file system permissions using file
system protections; restricting access; and backing up log data to ensure log data is retained.

Applications providing a user interface to audit data will leverage user permissions and roles identifying the user
accessing the data and the corresponding rights the user enjoys in order to make access decisions regarding the
deletion of audit data.

Audit information includes all information (e.g., audit records, audit settings, and audit reports) needed to
successfully audit information system activity.

Deletion of database audit data could mask the theft of, or the unauthorized modification of, sensitive data stored
in the database.

Check Content:
Note: The following instructions use the PGLOG environment variable. Refer to supplementary content
APPENDIX-I for instructions on configuring PGLOG.

Review locations of audit logs, both internal to the database and database audit logs located at the operating
system level.

Verify there are appropriate controls and permissions to protect the audit information from unauthorized
modification.

stderr Logging

If the PostgreSQL server is configured to use stderr for logging, the logs will be owned by the database
administrator (shown here as "postgres") with a default permissions level of 0600. The permissions can be
configured in postgresql.conf.

To check the permissions for log files, as the database administrator (shown here as "postgres"), run the following
command:

$ sudo su - postgres
$ psql -c "show log_file_mode"

If the permissions are not 0600, this is a finding.

As the database administrator (shown here as "postgres"), list the permissions of the logs:

$ sudo su - postgres
$ ls -la ${PGLOG?}

If logs are not owned by the database administrator (shown here as "postgres") and are not the same permissions
as configured in postgresql.conf, this is a finding.

syslog Logging

If the PostgreSQL server is configured to use syslog for logging, consult organization syslog setting for
permissions and ownership of logs.

Fix Text: To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA and APPENDIX-I for instructions on configuring PGLOG.

stderr Logging

With stderr logging enabled, as the database owner (shown here as "postgres"), set the following parameter in
postgresql.conf:

$ vi ${PGDATA?}/postgresql.conf
log_file_mode = 0600

To change the owner and permissions of the log files, run the following:

$ chown postgres:postgres ${PGDATA?}/${PGLOG?}
$ chmod 0700 ${PGDATA?}/${PGLOG?}
$ chmod 600 ${PGDATA?}/${PGLOG?}/*.log

syslog Logging

If PostgreSQL is configured to use syslog for logging, the log files must be configured to be owned by root with
0600 permissions.

$ chown root:root <log directory name>/<log_filename>
$ chmod 0700 <log directory name>
$ chmod 0600 <log directory name>/*.log

CCI: CCI-000164

Group ID (Vulid): V-261878
Group Title: SRG-APP-000121-DB-000202
Rule ID: SV-261878r1000958_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002300
Rule Title: PostgreSQL must protect its audit features from unauthorized access.

Vulnerability Discussion: Protecting audit data also includes identifying and protecting the tools used to view
and manipulate log data.

Depending upon the log format and application, system and application log tools may provide the only means to
manipulate and manage application and system log data. It is, therefore, imperative that access to audit tools be
controlled and protected from unauthorized access.

Applications providing tools to interface with audit data will leverage user permissions and roles identifying the
user accessing the tools and the corresponding rights the user enjoys in order to make access decisions regarding
the access to audit tools.

Audit tools include, but are not limited to, OS-provided audit tools, vendor-provided audit tools, and open-source
audit tools needed to successfully view and manipulate audit information system activity and records.

If an attacker were to gain access to audit tools, they could analyze audit logs for system weaknesses or
weaknesses in the auditing itself. An attacker could also manipulate logs to hide evidence of malicious activity.

Check Content:
Note: The following instructions use the PGDATA and PGVER environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA, APPENDIX-H for PGVER, and APPENDIX-I for PGLOG. Only the
database owner and superuser can alter configuration of PostgreSQL.

Ensure the PGLOG directory is owned by postgres user and group:

$ sudo su - postgres
$ ls -la ${PGLOG?}

If PGLOG is not owned by the database owner, this is a finding.

Ensure the data directory is owned by postgres user and group.

$ sudo su - postgres
$ ls -la ${PGDATA?}

If PGDATA is not owned by the database owner, this is a finding.

Ensure the pgaudit installation is owned by root:

$ sudo su - postgres
$ ls -la /usr/pgsql-${PGVER?}/share/extension/pgaudit*

If the pgaudit installation is not owned by root, this is a finding.

As the database administrator (shown here as "postgres"), run the following SQL to list all roles and their
privileges:

$ sudo su - postgres
$ psql -x -c "\du"

If any role has "superuser" that should not, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA, APPENDIX-H for PGVER and APPENDIX-I for
PGLOG.

If PGLOG or PGDATA are not owned by postgres user and group, configure them as follows:

$ sudo chown -R postgres:postgres ${PGDATA?}
$ sudo chown -R postgres:postgres ${PGLOG?}

If the pgaudit installation is not owned by root user and group, configure it as follows:

$ sudo chown -R root:root /usr/pgsql-${PGVER?}/share/extension/pgaudit*

To remove superuser from a role, as the database administrator (shown here as "postgres"), run the following
SQL:

$ sudo su - postgres
$ psql -c "ALTER ROLE <role-name> WITH NOSUPERUSER"

CCI: CCI-001493

Group ID (Vulid): V-261879
Group Title: SRG-APP-000122-DB-000203
Rule ID: SV-261879r1000960_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002400
Rule Title: PostgreSQL must protect its audit configuration from unauthorized modification.

Vulnerability Discussion: Protecting audit data also includes identifying and protecting the tools used to view
and manipulate log data. Therefore, protecting audit tools is necessary to prevent unauthorized operation on audit
data.

Applications providing tools to interface with audit data will leverage user permissions and roles identifying the
user accessing the tools and the corresponding rights the user enjoys to make access decisions regarding the
modification of audit tools.

Audit tools include, but are not limited to, vendor-provided and open source audit tools needed to successfully
view and manipulate audit information system activity and records. Audit tools include custom queries and report
generators.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

All configurations for auditing and logging can be found in the postgresql.conf configuration file. By default, this
file is owned by the database administrator account.

To check that the permissions of the postgresql.conf are owned by the database administrator with permissions of
0600, run the following as the database administrator (shown here as "postgres"):

$ sudo su - postgres
$ ls -la ${PGDATA?}

If postgresql.conf is not owned by the database administrator or does not have 0600 permissions, this is a finding.

stderr Logging

To check that logs are created with 0600 permissions, check the following setting:

$ sudo su - postgres
$ psql -c "SHOW log_file_mode"

If permissions are not 0600, this is a finding.

syslog Logging

If PostgreSQL is configured to use syslog, verify that the logs are owned by root and have 0600 permissions. If
they are not, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

Apply or modify access controls and permissions (both within PostgreSQL and in the file system/operating
system) to tools used to view or modify audit log data. Tools must be configurable by authorized personnel only.

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_file_mode = 0600

As the database administrator (shown here as "postgres"), change the ownership and permissions of configuration
files in PGDATA:

$ sudo su - postgres
$ chown postgres:postgres ${PGDATA?}/*.conf
$ chmod 0600 ${PGDATA?}/*.conf

CCI: CCI-001494

Group ID (Vulid): V-261880
Group Title: SRG-APP-000123-DB-000204
Rule ID: SV-261880r1000959_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002500
Rule Title: PostgreSQL must protect its audit features from unauthorized removal.

Vulnerability Discussion: Protecting audit data also includes identifying and protecting the tools used to view
and manipulate log data. Therefore, protecting audit tools is necessary to prevent unauthorized operation on audit
data.

Applications providing tools to interface with audit data will leverage user permissions and roles identifying the
user accessing the tools and the corresponding rights the user enjoys to make access decisions regarding the
deletion of audit tools.

Audit tools include, but are not limited to, vendor-provided and open source audit tools needed to successfully
view and manipulate audit information system activity and records. Audit tools include custom queries and report
generators.

Check Content:
Note: The following instructions use the PGDATA and PGVER environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the database administrator (shown here as "postgres"), verify the permissions of PGDATA:

$ sudo su - postgres
$ ls -la ${PGDATA?}

If PGDATA is not owned by postgres:postgres or if files can be accessed by others, this is a finding.

As the system administrator, verify the permissions of pgsql shared objects and compiled binaries:

$ ls -la /usr/pgsql-${PGVER?}/bin
$ ls -la /usr/pgsql-${PGVER?}/include
$ ls -la /usr/pgsql-${PGVER?}/lib
$ ls -la /usr/pgsql-${PGVER?}/share

If any of these are not owned by root:root, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the system administrator, change the permissions of PGDATA:

$ sudo chown -R postgres:postgres ${PGDATA?}
$ sudo chmod 700 ${PGDATA?}

As the system administrator, change the permissions of pgsql:

$ sudo chown -R root:root /usr/pgsql-${PGVER?}

CCI: CCI-001495

Group ID (Vulid): V-261881
Group Title: SRG-APP-000133-DB-000179
Rule ID: SV-261881r1000648_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002600
Rule Title: PostgreSQL must limit privileges to change software modules, to include stored procedures,
functions and triggers, and links to software external to PostgreSQL.

Vulnerability Discussion: If the system were to allow any user to make changes to software libraries, then those
changes might be implemented without undergoing the appropriate testing and approvals that are part of a robust
change management process.

Accordingly, only qualified and authorized individuals must be allowed to obtain access to information system
components for purposes of initiating changes, including upgrades and modifications.

Unmanaged changes that occur to the database software libraries or configuration can lead to unauthorized or
compromised installations.

Check Content:
Note: The following instructions use the PGDATA and PGVER environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the database administrator (shown here as "postgres"), check the permissions of configuration files for the
database:

$ sudo su - postgres
$ ls -la ${PGDATA?}

If any files are not owned by the database owner or have permissions allowing others to modify (write)
configuration files, this is a finding.

As the server administrator, check the permissions on the shared libraries for PostgreSQL:

$ sudo ls -la /usr/pgsql-${PGVER?}
$ sudo ls -la /usr/pgsql-${PGVER?}/bin
$ sudo ls -la /usr/pgsql-${PGVER?}/include
$ sudo ls -la /usr/pgsql-${PGVER?}/lib
$ sudo ls -la /usr/pgsql-${PGVER?}/share

If any files are not owned by root or have permissions allowing others to modify (write) configuration files, this is
a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the database administrator (shown here as "postgres"), change the ownership and permissions of configuration
files in PGDATA:

$ sudo su - postgres
$ chown postgres:postgres ${PGDATA?}/postgresql.conf
$ chmod 0600 ${PGDATA?}/postgresql.conf

As the server administrator, change the ownership and permissions of shared objects in
/usr/pgsql-${PGVER?}/*.so

$ sudo chown root:root /usr/pgsql-${PGVER?}/lib/*.so
$ sudo chmod 0755 /usr/pgsql-${PGVER?}/lib/*.so

As the service administrator, change the ownership and permissions of executables in
/usr/pgsql-${PGVER?}/bin:

$ sudo chown root:root /usr/pgsql-${PGVER?}/bin/*
$ sudo chmod 0755 /usr/pgsql-${PGVER?}/bin/*

CCI: CCI-001499

Group ID (Vulid): V-261882
Group Title: SRG-APP-000133-DB-000198
Rule ID: SV-261882r1000651_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-002700
Rule Title: The PostgreSQL software installation account must be restricted to authorized users.

Vulnerability Discussion: When dealing with change control issues, it should be noted any changes to the
hardware, software, and/or firmware components of the information system and/or application can have
significant effects on the overall security of the system.

If the system were to allow any user to make changes to software libraries, then those changes might be
implemented without undergoing the appropriate testing and approvals that are part of a robust change
management process.

Accordingly, only qualified and authorized individuals must be allowed access to information system
components for purposes of initiating changes, including upgrades and modifications.

DBA and other privileged administrative or application owner accounts are granted privileges that allow actions
that can have a great impact on database security and operation. It is especially important to grant privileged
access to only those persons who are qualified and authorized to use them.

Check Content:
Review procedures for controlling, granting access to, and tracking use of the PostgreSQL software installation
account(s).

If access or use of this account is not restricted to the minimum number of personnel required or if unauthorized
access to the account has been granted, this is a finding.

Fix Text: Develop, document, and implement procedures to restrict and track use of the PostgreSQL software
installation account(s).

CCI: CCI-001499

Group ID (Vulid): V-261883
Group Title: SRG-APP-000133-DB-000199
Rule ID: SV-261883r1000654_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002800
Rule Title: Database software, including PostgreSQL configuration files, must be stored in dedicated directories,
or DASD pools, separate from the host OS and other applications.

Vulnerability Discussion: When dealing with change control issues, it should be noted any changes to the
hardware, software, and/or firmware components of the information system and/or application can potentially
have significant effects on the overall security of the system.

Multiple applications can provide a cumulative negative effect. A vulnerability and subsequent exploit to one
application can lead to an exploit of other applications sharing the same security context. For example, an exploit
to a web server process that leads to unauthorized administrative access to host system directories can most likely
lead to a compromise of all applications hosted by the same system. Database software not installed using
dedicated directories both threatens and is threatened by other hosted applications. Access controls defined for
one application may by default provide access to the other application's database objects or directories. Any
method that provides any level of separation of security context assists in the protection between applications.

Check Content:
Review the PostgreSQL software library directory and any subdirectories.

If any non-PostgreSQL software directories exist on the disk directory, examine or investigate their use. If any of
the directories are used by other applications, including third-party applications that use the PostgreSQL, this is a
finding.

Only applications that are required for the functioning and administration, not use, of the PostgreSQL software
library should be located in the same disk directory as the PostgreSQL software libraries.

If other applications are located in the same directory as PostgreSQL, this is a finding.

Fix Text: Install all applications on directories separate from the PostgreSQL software library directory. Relocate
any directories or reinstall other application software that currently shares the PostgreSQL software library
directory.

CCI: CCI-001499

Group ID (Vulid): V-261884
Group Title: SRG-APP-000133-DB-000200
Rule ID: SV-261884r1000657_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-002900
Rule Title: Database objects (including but not limited to tables, indexes, storage, stored procedures, functions,
triggers, links to software external to the DBMS, etc.) must be owned by database/PostgreSQL principals
authorized for ownership.

Vulnerability Discussion: Within the database, object ownership implies full privileges to the owned object,
including the privilege to assign access to the owned objects to other subjects. Database functions and procedures
can be coded using definer's rights. This allows anyone who uses the object to perform the actions if they were
the owner. If not properly managed, this can lead to privileged actions being taken by unauthorized individuals.

Conversely, if critical tables or other objects rely on unauthorized owner accounts, these objects may be lost
when an account is removed.

Check Content:
Review system documentation to identify accounts authorized to own database objects. Review accounts that
own objects in the database(s).

If any database objects are found to be owned by users not authorized to own database objects, this is a finding.

To check the ownership of objects in the database, as the database administrator, run the following SQL:

$ sudo su - postgres
$ psql -X -c '\dnS'
$ psql -x -c "\dt *.*"
$ psql -X -c '\dsS'
$ psql -x -c "\dv *.*"
$ psql -x -c "\df+ *.*"

If any object is not owned by an authorized role for ownership, this is a finding.

Fix Text: Assign ownership of authorized objects to authorized object owner accounts.

Schema Owner

To create a schema owned by the user "bob", run the following SQL:

$ sudo su - postgres
$ psql -c "CREATE SCHEMA test AUTHORIZATION bob"

To alter the ownership of an existing object to be owned by the user "bob", run the following SQL:

$ sudo su - postgres
$ psql -c "ALTER SCHEMA test OWNER TO bob"

CCI: CCI-001499

Group ID (Vulid): V-261885
Group Title: SRG-APP-000133-DB-000362
Rule ID: SV-261885r1000949_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-003000
Rule Title: The role(s)/group(s) used to modify database structure (including but not necessarily limited to
tables, indexes, storage, etc.) and logic modules (stored procedures, functions, triggers, links to software external
to PostgreSQL, etc.) must be restricted to authorized users.

Vulnerability Discussion: If PostgreSQL were to allow any user to make changes to database structure or logic,
then those changes might be implemented without undergoing the appropriate testing and approvals that are part
of a robust change management process.

Accordingly, only qualified and authorized individuals must be allowed to obtain access to information system
components for purposes of initiating changes, including upgrades and modifications.

Unmanaged changes that occur to the database software libraries or configuration can lead to unauthorized or
compromised installations.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

As the database administrator (shown here as "postgres"), list all users and their permissions by running the
following SQL:

$ sudo su - postgres
$ psql -c "\dp *.*"

Verify that all objects have the correct privileges. If they do not, this is a finding.

As the database administrator (shown here as "postgres"), verify the permissions of the database directory on the
filesystem:

$ ls -la ${PGDATA?}

If permissions of the database directory are not limited to an authorized user account, this is a finding.

Fix Text: As the database administrator, revoke any permissions from a role that are deemed unnecessary by
running the following SQL:

ALTER ROLE bob NOCREATEDB;
ALTER ROLE bob NOCREATEROLE;
ALTER ROLE bob NOSUPERUSER;
ALTER ROLE bob NOINHERIT;
REVOKE SELECT ON some_function FROM bob;

CCI: CCI-001499

Group ID (Vulid): V-261886
Group Title: SRG-APP-000141-DB-000091
Rule ID: SV-261886r1000951_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-003200
Rule Title: Unused database components, PostgreSQL software, and database objects must be removed.

Vulnerability Discussion: Information systems are capable of providing a wide variety of functions and
services. Some of the functions and services, provided by default, may not be necessary to support essential
organizational operations (e.g., key missions, functions).

It is detrimental for software products to provide, or install by default, functionality exceeding requirements or
mission objectives.

PostgreSQL must adhere to the principles of least functionality by providing only essential capabilities.

Check Content:
To get a list of all extensions installed, use the following commands:

$ sudo su - postgres
$ psql -c "select * from pg_extension where extname != 'plpgsql'"

If any extensions exist that are not approved, this is a finding.

Fix Text: To remove extensions, use the following commands:

$ sudo su - postgres
$ psql -c "DROP EXTENSION <extension_name>"

Note: Removal of plpgsql is not recommended.

CCI: CCI-000381

Group ID (Vulid): V-261887
Group Title: SRG-APP-000141-DB-000092
Rule ID: SV-261887r1000666_rule
Severity: CAT II

Rule Version (STIG-ID): CD16-00-003300
Rule Title: Unused database components that are integrated in PostgreSQL and cannot be uninstalled must be
disabled.

Vulnerability Discussion: Information systems are capable of providing a wide variety of functions and
services. Some of the functions and services, provided by default, may not be necessary to support essential
organizational operations (e.g., key missions, functions).

It is detrimental for software products to provide, or install by default, functionality exceeding requirements or
mission objectives.

DBMSs must adhere to the principles of least functionality by providing only essential capabilities.

Unused, unnecessary PostgreSQL components increase the attack vector for PostgreSQL by introducing
additional targets for attack. By minimizing the services and applications installed on the system, the number of
potential vulnerabilities is reduced. Components of the system that are unused and cannot be uninstalled must be
disabled. The techniques available for disabling components will vary by DBMS product, OS, and the nature of
the component and may include PostgreSQL configuration settings, OS service settings, OS file access security,
and PostgreSQL user/role permissions.

Check Content:
To list all installed packages, as the system administrator, run the following:

RHEL/CENT 8/9 Systems
$ sudo dnf list installed | grep postgres

RHEL/CENT 7 Systems
$ sudo yum list installed | grep postgres

Debian Systems
$ dpkg --get-selections | grep postgres

If any of the packages installed not required, this is a finding.

Fix Text: To remove any unneeded executables, as the system administrator, run the following:

RHEL/CENT Systems
$ sudo yum erase <package_name>

Debian Systems
$ sudo apt-get remove <package_name>

CCI: CCI-000381

Group ID (Vulid): V-261888
Group Title: SRG-APP-000141-DB-000093
Rule ID: SV-261888r1000669_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-003400
Rule Title: Access to external executables must be disabled or restricted.

Vulnerability Discussion: Information systems are capable of providing a wide variety of functions and
services. Some of the functions and services, provided by default, may not be necessary to support essential
organizational operations (e.g., key missions, functions).

It is detrimental for applications to provide, or install by default, functionality exceeding requirements or mission
objectives.

Applications must adhere to the principles of least functionality by providing only essential capabilities.

PostgreSQL may spawn additional external processes to execute procedures that are defined in PostgreSQL but
stored in external host files (external procedures). The spawned process used to execute the external procedure
may operate within a different OS security context than PostgreSQL and provide unauthorized access to the host
system.

Check Content:
PostgreSQL's COPY command can interact with the underlying OS. Only superuser has access to this command.

As the database administrator (shown here as "postgres"), run the following SQL to list all roles and their
privileges:

$ sudo su - postgres
$ psql -x -c "\du"

If any role has "superuser" that should not, this is a finding.

It is possible for an extension to contain code that could access external executables via SQL. To list all installed
extensions, as the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -x -c "SELECT * FROM pg_available_extensions WHERE installed_version IS NOT NULL"

If any installed extensions are not approved, this is a finding.

Fix Text: To remove superuser from a role, as the database administrator (shown here as "postgres"), run the
following SQL:

$ sudo su - postgres
$ psql -c "ALTER ROLE <role-name> WITH NOSUPERUSER"

To remove extensions from PostgreSQL, as the database administrator (shown here as "postgres"), run the
following SQL:

$ sudo su - postgres
$ psql -c "DROP EXTENSION extension_name"

CCI: CCI-000381

Group ID (Vulid): V-261889
Group Title: SRG-APP-000142-DB-000094
Rule ID: SV-261889r1000672_rule

Severity: CAT II
Rule Version (STIG-ID): CD16-00-003500
Rule Title: PostgreSQL must be configured to prohibit or restrict the use of organization-defined functions, ports,
protocols, and/or services, as defined in the PPSM CAL and vulnerability assessments.

Vulnerability Discussion: In order to prevent unauthorized connection of devices, unauthorized transfer of
information, or unauthorized tunneling (i.e., embedding of data types within data types), organizations must
disable or restrict unused or unnecessary physical and logical ports/protocols/services on information systems.

Applications are capable of providing a wide variety of functions and services. Some of the functions and
services provided by default may not be necessary to support essential organizational operations. Additionally, it
is sometimes convenient to provide multiple services from a single component (e.g., email and web services);
however, doing so increases risk over limiting the services provided by any one component.

To support the requirements and principles of least functionality, the application must support the organizational
requirements providing only essential capabilities and limiting the use of ports, protocols, and/or services to only
those required, authorized, and approved to conduct official business or to address authorized quality of life
issues.

Database Management Systems using ports, protocols, and services deemed unsafe are open to attack through
those ports, protocols, and services. This can allow unauthorized access to the database and through the database
to other components of the information system.

Check Content:
As the database administrator, run the following SQL:

$ psql -c "SHOW port"
$ psql -c "SHOW listen_addresses"

If the currently defined address:port configuration is deemed prohibited, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To change the listening port of the database, as the database administrator, change the following setting in
postgresql.conf:

$ sudo su - postgres
$ vi $PGDATA/postgresql.conf

Change the port parameter to the desired port.

To change the listening address of the database, as the database administrator, change the following setting in
postgresql.conf:
listen_addresses = '10.0.0.1, 127.0.0.1'

Restart the database:

SYSTEMD SERVER ONLY
$ sudo systemctl restart postgresql-${PGVER?}

Note: psql uses the port 5432 by default. This can be changed by specifying the port with psql or by setting the
PGPORT environment variable:

$ psql -p 5432 -c "SHOW port"
$ export PGPORT=5432

CCI: CCI-000382

Group ID (Vulid): V-261890
Group Title: SRG-APP-000148-DB-000103
Rule ID: SV-261890r1000675_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-003600
Rule Title: PostgreSQL must uniquely identify and authenticate organizational users (or processes acting on
behalf of organizational users).

Vulnerability Discussion: To assure accountability and prevent unauthenticated access, organizational users
must be identified and authenticated to prevent potential misuse and compromise of the system.

Organizational users include organizational employees or individuals the organization deems to have equivalent
status of employees (e.g., contractors). Organizational users (and any processes acting on behalf of users) must
be uniquely identified and authenticated for all accesses, except the following:

(i) Accesses explicitly identified and documented by the organization. Organizations document specific user
actions that can be performed on the information system without identification or authentication; and
(ii) Accesses that occur through authorized use of group authenticators without individual authentication.
Organizations may require unique identification of individuals using shared accounts, for detailed accountability
of individual activity.

Check Content:
Review PostgreSQL settings to determine whether organizational users are uniquely identified and authenticated
when logging on/connecting to the system.

To list all roles in the database, as the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -c "\du"

If organizational users are not uniquely identified and authenticated, this is a finding.

As the database administrator (shown here as "postgres"), verify the current pg_hba.conf authentication settings:

$ sudo su - postgres
$ cat ${PGDATA?}/pg_hba.conf

If every role does not have unique authentication requirements, this is a finding.

If accounts are determined to be shared, determine if individuals are first individually authenticated. If
individuals are not individually authenticated before using the shared account, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for

instructions on configuring PGDATA.

Configure PostgreSQL settings to uniquely identify and authenticate all organizational users who log on/connect
to the system.

To create roles, use the following SQL:

CREATE ROLE <role_name> [OPTIONS]

For more information on CREATE ROLE, refer to the official documentation:
https://www.postgresql.org/docs/current/static/sql-createrole.html.

For each role created, the database administrator can specify database authentication by editing pg_hba.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/pg_hba.conf

An example pg_hba entry looks like this:

TYPE DATABASE USER ADDRESS METHOD
host test_db bob 192.168.0.0/16 scram-sha-256

For more information on pg_hba.conf, refer to the official documentation:
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html.

CCI: CCI-000764

Group ID (Vulid): V-261891
Group Title: SRG-APP-000171-DB-000074
Rule ID: SV-261891r1000970_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-003800
Rule Title: If passwords are used for authentication, PostgreSQL must store only hashed, salted representations
of passwords.

Vulnerability Discussion: The DOD standard for authentication is DOD-approved PKI certificates.

Authentication based on User ID and Password may be used only when it is not possible to employ a PKI
certificate, and requires Authorizing Official (AO) approval.

In such cases, database passwords stored in clear text, using reversible encryption, or using unsalted hashes
would be vulnerable to unauthorized disclosure. Database passwords must always be in the form of one-way,
salted hashes when stored internally or externally to PostgreSQL.

Check Content:
Note: The following instructions use the PGVER environment variables. Refer to supplementary content
APPENDIX-H for PGVER.

To check if password encryption is enabled, as the database administrator (shown here as "postgres"), run the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW password_encryption"

If password_encryption is not "scram-sha-256", this is a finding.

To identify if any passwords have been stored without being hashed and salted, as the database administrator
(shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -x -c "SELECT username, passwd FROM pg_shadow WHERE passwd IS NULL OR passwd NOT LIKE
'SCRAM-SHA-256%';"

If any password is in plaintext, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To enable password_encryption, as the database administrator, edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
password_encryption = 'scram-sha-256'

Institute a policy of not using the "WITH UNENCRYPTED PASSWORD" option with the CREATE
ROLE/USER and ALTER ROLE/USER commands. (This option overrides the setting of the
password_encryption configuration parameter.)

As the system administrator, restart the server with the new configuration:

SYSTEMD SERVER ONLY
$ sudo systemctl restart postgresql-${PGVER?}

CCI: CCI-000196

Group ID (Vulid): V-261892
Group Title: SRG-APP-000172-DB-000075
Rule ID: SV-261892r1000681_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-003900
Rule Title: If passwords are used for authentication, PostgreSQL must transmit only encrypted representations of
passwords.

Vulnerability Discussion: The DOD standard for authentication is DOD-approved PKI certificates.

Authentication based on User ID and Password may be used only when it is not possible to employ a PKI
certificate, and requires Authorizing Official (AO) approval.

In such cases, passwords need to be protected at all times, and encryption is the standard method for protecting
passwords during transmission.

PostgreSQL passwords sent in clear text format across the network are vulnerable to discovery by unauthorized
users. Disclosure of passwords may easily lead to unauthorized access to the database.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

As the database administrator (shown here as "postgres"), review the authentication entries in pg_hba.conf:

$ sudo su - postgres
$ cat ${PGDATA?}/pg_hba.conf

If any entries use the auth_method (last column in records) "password" or "md5", this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

As the database administrator (shown here as "postgres"), edit pg_hba.conf authentication file and change all
entries of "password" to "scram-sha-256":

$ sudo su - postgres
$ vi ${PGDATA?}/pg_hba.conf
host all all .example.com scram-sha-256

CCI: CCI-000197

Group ID (Vulid): V-261893
Group Title: SRG-APP-000175-DB-000067
Rule ID: SV-261893r1000684_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004000
Rule Title: PostgreSQL, when using PKI-based authentication, must validate certificates by performing RFC
5280-compliant certification path validation.

Vulnerability Discussion: The DOD standard for authentication is DOD-approved PKI certificates.

A certificate's certification path is the path from the end entity certificate to a trusted root certification authority
(CA). Certification path validation is necessary for a relying party to make an informed decision regarding
acceptance of an end entity certificate. Certification path validation includes checks such as certificate issuer
trust, time validity and revocation status for each certificate in the certification path. Revocation status
information for CA and subject certificates in a certification path is commonly provided via certificate revocation
lists (CRLs) or online certificate status protocol (OCSP) responses.

Database Management Systems that do not validate certificates by performing RFC 5280-compliant certification
path validation are in danger of accepting certificates that are invalid and/or counterfeit. This could allow
unauthorized access to the database.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

To verify that a CRL file exists, as the database administrator (shown here as "postgres"), run the following:

$ sudo su - postgres
$ psql -c "SELECT CASE WHEN length(setting) > 0
THEN CASE WHEN substring(setting, 1, 1) = '/'
THEN setting
ELSE (SELECT setting FROM pg_settings WHERE name = 'data_directory') || '/' || setting
END
ELSE ''
END AS ssl_crl_file
FROM pg_settings
WHERE name = 'ssl_crl_file';"

If this is not set to a CRL file, this is a finding.

Verify the existence of the CRL file by checking the directory from above:

$ sudo su - postgres
$ ls -ld <ssl_crl_file>

If the CRL file does not exist, this is a finding.

Verify that hostssl entries in pg_hba.conf have "cert" and "clientcert=verify-ca" enabled:

$ sudo su - postgres
$ grep '^hostssl.*cert.*clientcert=verify-ca ' ${PGDATA?}/pg_hba.conf

If hostssl entries are not returned, this is a finding.

If certificates are not being validated by performing RFC 5280-compliant certification path validation, this is a
finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To configure PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

To generate a Certificate Revocation List, refer to the official Red Hat Documentation:
https://access.redhat.com/documentation/en-
US/Red_Hat_Update_Infrastructure/2.1/html/Administration_Guide/chap-Red_Hat_Update_Infrastructure-
Administration_Guide-Certification_Revocation_List_CRL.html.

As the database administrator (shown here as "postgres"), copy the CRL file into the data directory:

As the system administrator, copy the CRL file into the PostgreSQL Data Directory:

$ sudo cp root.crl ${PGDATA?}/root.crl

As the database administrator (shown here as "postgres"), set the ssl_crl_file parameter to the filename of the
CRL:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
ssl_crl_file = 'root.crl'

In pg_hba.conf, require ssl authentication:

$ sudo su - postgres
$ vi ${PGDATA?}/pg_hba.conf
hostssl <database> <user> <address> cert clientcert=verify-ca

As the system administrator, reload the server with the new configuration:

SYSTEMD SERVER ONLY
$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000185

Group ID (Vulid): V-261894
Group Title: SRG-APP-000176-DB-000068
Rule ID: SV-261894r1000687_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-004100
Rule Title: PostgreSQL must enforce authorized access to all PKI private keys stored/used by PostgreSQL.

Vulnerability Discussion: The DOD standard for authentication is DOD-approved PKI certificates. PKI
certificate-based authentication is performed by requiring the certificate holder to cryptographically prove
possession of the corresponding private key.

If the private key is stolen, an attacker can use the private key(s) to impersonate the certificate holder. In cases
where the DBMS-stored private keys are used to authenticate PostgreSQL to the system's clients, loss of the
corresponding private keys would allow an attacker to successfully perform undetected man in the middle attacks
against the PostgreSQL system and its clients.

Both the holder of a digital certificate and the issuing authority must take careful measures to protect the
corresponding private key. Private keys should always be generated and protected in FIPS 140-2 or 140-3
validated cryptographic modules.

All access to the private key(s) of PostgreSQL must be restricted to authorized and authenticated users. If
unauthorized users have access to one or more of PostgreSQL's private keys, an attacker could gain access to the
key(s) and use them to impersonate the database on the network or otherwise perform unauthorized actions.

Check Content:
As the database administrator (shown here as "postgres"), verify the following settings:

$ sudo su - postgres
$ psql -c "select name, case when setting = '' then
'<undefined>' when substring(setting, 1, 1) = '/' then
setting else (select setting from pg_settings where name
= 'data_directory') || '/' || setting end as setting from
pg_settings where name in ('ssl_ca_file', 'ssl_cert_file',

'ssl_crl_file', 'ssl_key_file');"

If the directory in which these files are stored is not protected, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Store all PostgreSQL PKI private keys in a FIPS 140-2-validated cryptographic module.

Ensure access to PostgreSQL PKI private keys is restricted to only authenticated and authorized users.

PostgreSQL private key(s) can be stored in $PGDATA directory, which is only accessible by the database owner
(usually postgres, DBA) user. Do not allow access to this system account to unauthorized users.

To put the keys in a different directory, as the database administrator (shown here as "postgres"), set the
following settings to a protected directory:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
ssl_ca_file = "/some/protected/directory/root.crt"
ssl_crl_file = "/some/protected/directory/root.crl"
ssl_cert_file = "/some/protected/directory/server.crt"
ssl_key_file = "/some/protected/directory/server.key"

As the system administrator, restart the server with the new configuration:

SYSTEMD SERVER ONLY
$ sudo systemctl restart postgresql-${PGVER?}

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-000186

Group ID (Vulid): V-261895
Group Title: SRG-APP-000177-DB-000069
Rule ID: SV-261895r1000690_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004200
Rule Title: PostgreSQL must map the PKI-authenticated identity to an associated user account.

Vulnerability Discussion: The DOD standard for authentication is DOD-approved PKI certificates. Once a PKI
certificate has been validated, it must be mapped to a PostgreSQL user account for the authenticated identity to
be meaningful to PostgreSQL and useful for authorization decisions.

Check Content:
The Common Name (cn) attribute of the certificate will be compared to the requested database username and, if
they match, the login will be allowed.

To check the cn of the certificate, using openssl, do the following:

$ openssl x509 -noout -subject -in /path/to/your/client_cert.file

If the cn does not match the users listed in PostgreSQL and no user mapping is used, this is a finding.

User name mapping can be used to allow cn to be different from the database username. If User Name Maps are
used, run the following as the database administrator (shown here as "postgres"), to get a list of maps used for
authentication:

$ sudo su - postgres
$ grep "map" ${PGDATA?}/pg_hba.conf

With the names of the maps used, check those maps against the username mappings in pg_ident.conf:

$ sudo su - postgres
$ cat ${PGDATA?}/pg_ident.conf

If user accounts are not being mapped to authenticated identities, this is a finding.

If the cn and the username mapping do not match, this is a finding.

Fix Text: Configure PostgreSQL to map authenticated identities directly to PostgreSQL user accounts.

For information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-000187

Group ID (Vulid): V-261896
Group Title: SRG-APP-000179-DB-000114
Rule ID: SV-261896r1000693_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-004400
Rule Title: PostgreSQL must use NIST FIPS 140-2 or 140-3 validated cryptographic modules for cryptographic
operations.

Vulnerability Discussion: Use of weak or not validated cryptographic algorithms undermines the purposes of
using encryption and digital signatures to protect data. Weak algorithms can be easily broken and not validated
cryptographic modules may not implement algorithms correctly. Unapproved cryptographic modules or
algorithms should not be relied on for authentication, confidentiality, or integrity. Weak cryptography could allow
an attacker to gain access to and modify data stored in the database as well as the administration settings of
PostgreSQL.

Applications (including DBMSs) using cryptography are required to use approved NIST FIPS 140-2 or 140-3
validated cryptographic modules that meet the requirements of applicable federal laws, Executive Orders,
directives, policies, regulations, standards, and guidance.

NSA Type-X (where X=1, 2, 3, 4) products are NSA-certified, hardware-based encryption modules.

The standard for validating cryptographic modules will transition to the NIST FIPS 140-3 publication.

FIPS 140-2 modules can remain active for up to five years after validation or until September 21, 2026, when the
FIPS 140-2 validations will be moved to the historical list. Even on the historical list, CMVP supports the
purchase and use of these modules for existing systems. While federal agencies decide when they move to FIPS

140-3 only modules, purchasers are reminded that for several years there may be a limited selection of FIPS 140-
3 modules from which to choose. CMVP recommends purchasers consider all modules that appear on the
Validated Modules Search Page:
https://csrc.nist.gov/projects/cryptographic-module-validation-program/validated-modules.

More information on the FIPS 140-3 transition can be found here:
https://csrc.nist.gov/Projects/fips-140-3-transition-effort/.

Check Content:
As the system administrator, run the following:

$ openssl version

If "fips" is not included in the OpenSSL version, this is a finding.

Fix Text: Configure OpenSSL to meet FIPS Compliance using the following documentation in section 9.1:
http://csrc.nist.gov/groups/STM/cmvp/documents/140-1/140sp/140sp1758.pdf.

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-000803

Group ID (Vulid): V-261897
Group Title: SRG-APP-000180-DB-000115
Rule ID: SV-261897r1000696_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004500
Rule Title: PostgreSQL must uniquely identify and authenticate nonorganizational users (or processes acting on
behalf of nonorganizational users).

Vulnerability Discussion: Nonorganizational users include all information system users other than
organizational users, which include organizational employees or individuals the organization deems to have
equivalent status of employees (e.g., contractors, guest researchers, individuals from allied nations).

Nonorganizational users must be uniquely identified and authenticated for all accesses other than those accesses
explicitly identified and documented by the organization when related to the use of anonymous access, such as
accessing a web server.

Accordingly, a risk assessment is used in determining the authentication needs of the organization.

Scalability, practicality, and security are simultaneously considered in balancing the need to ensure ease of use
for access to federal information and information systems with the need to protect and adequately mitigate risk to
organizational operations, organizational assets, individuals, other organizations, and the Nation.

Check Content:
PostgreSQL uniquely identifies and authenticates PostgreSQL users through the use of DBMS roles.

To list all roles in the database, as the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres

$ psql -c "\du"

If users are not uniquely identified per organizational documentation, this is a finding.

Fix Text: To drop a role, as the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -c "DROP ROLE <role_to_drop>"

To create a role, as the database administrator, run the following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE <role name> LOGIN"

For the complete list of permissions allowed by roles, refer to the official documentation:
https://www.postgresql.org/docs/current/static/sql-createrole.html.

CCI: CCI-000804

Group ID (Vulid): V-261898
Group Title: SRG-APP-000211-DB-000122
Rule ID: SV-261898r1000699_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004600
Rule Title: PostgreSQL must separate user functionality (including user interface services) from database
management functionality.

Vulnerability Discussion: Information system management functionality includes functions necessary to
administer databases, network components, workstations, or servers and typically requires privileged user access.

The separation of user functionality from information system management functionality is either physical or
logical and is accomplished by using different computers, different central processing units, different instances of
the operating system, different network addresses, combinations of these methods, or other methods, as
appropriate.

An example of this type of separation is observed in web administrative interfaces that use separate
authentication methods for users of any other information system resources.

This may include isolating the administrative interface on a different domain and with additional access controls.

If administrative functionality or information regarding PostgreSQL management is presented on an interface
available for users, information on PostgreSQL settings may be inadvertently made available to the user.

Check Content:
Check PostgreSQL settings and vendor documentation to verify that administrative functionality is separate from
user functionality.

As the database administrator (shown here as "postgres"), list all roles and permissions for the database:

$ sudo su - postgres
$ psql -c "\du"

If any nonadministrative role has the attribute "Superuser", "Create role", "Create DB" or "Bypass RLS", this is a
finding.

If administrator and general user functionality are not separated either physically or logically, this is a finding.

Fix Text: Configure PostgreSQL to separate database administration and general user functionality.

Do not grant superuser, create role, create db, or bypass rls role attributes to users that do not require it.

To remove privileges, refer to the following example:

ALTER ROLE <username> NOSUPERUSER NOCREATEDB NOCREATEROLE NOBYPASSRLS;

CCI: CCI-001082

Group ID (Vulid): V-261899
Group Title: SRG-APP-000220-DB-000149
Rule ID: SV-261899r1000702_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004700
Rule Title: PostgreSQL must invalidate session identifiers upon user logout or other session termination.

Vulnerability Discussion: Captured sessions can be reused in "replay" attacks. This requirement limits the
ability of adversaries to capture and continue to employ previously valid session IDs.

This requirement focuses on communications protection for the PostgreSQL session rather than for the network
packet. The intent of this control is to establish grounds for confidence at each end of a communications session
in the ongoing identity of the other party and in the validity of the information being transmitted.

Session IDs are tokens generated by DBMSs to uniquely identify a user's (or process's) session. DBMSs will
make access decisions and execute logic based on the session ID.

Unique session IDs help to reduce predictability of said identifiers. Unique session IDs address man-in-the-
middle attacks, including session hijacking or insertion of false information into a session. If the attacker is
unable to identify or guess the session information related to pending application traffic, they will have more
difficulty in hijacking the session or otherwise manipulating valid sessions.

When a user logs out, or when any other session termination event occurs, PostgreSQL must terminate the user
session(s) to minimize the potential for sessions to be hijacked.

Check Content:
As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -h localhost -c "SHOW tcp_keepalives_idle"
$ psql -h localhost -c "SHOW tcp_keepalives_interval"
$ psql -h localhost -c "SHOW tcp_keepalives_count"
$ psql -h localhost -c "SHOW statement_timeout"

If these settings are not set to something other than zero, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi $PGDATA/postgresql.conf

Set the following parameters to organizational requirements:

statement_timeout = 10000 #milliseconds
tcp_keepalives_idle = 10 # seconds
tcp_keepalives_interval = 10 # seconds
tcp_keepalives_count = 10

As the system administrator, restart the server with the new configuration:

$ sudo systemctl restart postgresql-${PGVER?}

CCI: CCI-001185

Group ID (Vulid): V-261900
Group Title: SRG-APP-000224-DB-000384
Rule ID: SV-261900r1000705_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-004900
Rule Title: PostgreSQL must maintain the authenticity of communications sessions by guarding against man-in-
the-middle attacks that guess at Session ID values.

Vulnerability Discussion: One class of man-in-the-middle, or session hijacking, attack involves the adversary
guessing at valid session identifiers based on patterns in identifiers already known.

The preferred technique for thwarting guesses at Session IDs is the generation of unique session identifiers using
a FIPS 140-2 or 140-3 approved random number generator.

However, it is recognized that available DBMS products do not all implement the preferred technique yet may
have other protections against session hijacking. Therefore, other techniques are acceptable, provided they are
demonstrated to be effective.

Check Content:
To check if PostgreSQL is configured to use ssl, as the database administrator (shown here as "postgres"), run the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW ssl"

If this is not set to on, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To configure PostgreSQL to use SSL, as a database owner (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameter:

ssl = on

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

For further SSL configurations, refer to the official documentation:
https://www.postgresql.org/docs/current/static/ssl-tcp.html.

CCI: CCI-001188

Group ID (Vulid): V-261901
Group Title: SRG-APP-000231-DB-000154
Rule ID: SV-261901r1000708_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-005200
Rule Title: PostgreSQL must protect the confidentiality and integrity of all information at rest.

Vulnerability Discussion: This control is intended to address the confidentiality and integrity of information at
rest in nonmobile devices and covers user information and system information. Information at rest refers to the
state of information when it is located on a secondary storage device (e.g., disk drive, tape drive) within an
organizational information system. Applications and application users generate information throughout the
course of their application use.

User data generated, as well as application-specific configuration data, needs to be protected. Organizations may
choose to employ different mechanisms to achieve confidentiality and integrity protections, as appropriate.

If the confidentiality and integrity of application data is not protected, the data will be open to compromise and
unauthorized modification.

Check Content:
If the application owner and Authorizing Official (AO) have determined that encryption of data at rest is NOT
required, this is not a finding.

One possible way to encrypt data within PostgreSQL is to use the pgcrypto extension.

To check if pgcrypto is installed on PostgreSQL, as a database administrator (shown here as "postgres"), run the
following command:

$ sudo su - postgres

$ psql -c "SELECT * FROM pg_available_extensions where name='pgcrypto'"

If data in the database requires encryption and pgcrypto is not available, this is a finding.

If disk or filesystem requires encryption, ask the system owner, database administrator (DBA), and system
administrator (SA) to demonstrate the use of disk-level encryption. If this is required and is not found, this is a
finding.

If controls do not exist or are not enabled, this is a finding.

Fix Text: Apply appropriate controls to protect the confidentiality and integrity of data at rest in the database.

The pgcrypto module provides cryptographic functions for PostgreSQL. Refer to supplementary content
APPENDIX-E for documentation on installing pgcrypto.

With pgcrypto installed, it is possible to insert encrypted data into the database:

INSERT INTO accounts(username, password) VALUES ('bob', crypt('a_secure_password', gen_salt('xdes')));

CCI: CCI-001199

Group ID (Vulid): V-261902
Group Title: SRG-APP-000233-DB-000124
Rule ID: SV-261902r1000711_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005300
Rule Title: PostgreSQL must isolate security functions from nonsecurity functions.

Vulnerability Discussion: An isolation boundary provides access control and protects the integrity of the
hardware, software, and firmware that perform security functions.

Security functions are the hardware, software, and/or firmware of the information system responsible for
enforcing the system security policy and supporting the isolation of code and data on which the protection is
based.

Developers and implementers can increase the assurance in security functions by employing well-defined
security policy models; structured, disciplined, and rigorous hardware and software development techniques; and
sound system/security engineering principles.

Database Management Systems typically separate security functionality from nonsecurity functionality via
separate databases or schemas. Database objects or code implementing security functionality should not be
commingled with objects or code implementing application logic. When security and nonsecurity functionality
are commingled, users who have access to nonsecurity functionality may be able to access security functionality.

Check Content:
Check PostgreSQL settings to determine whether objects or code implementing security functionality are located
in a separate security domain, such as a separate database or schema created specifically for security
functionality.

By default, all objects in pg_catalog and information_schema are owned by the database administrator.

To check the access controls for those schemas, as the database administrator (shown here as "postgres"), run the
following commands to review the access privileges granted on the data dictionary and security tables, views,
sequences, functions and trigger procedures:

$ sudo su - postgres
$ psql -x -c "\dp pg_catalog.*"
$ psql -x -c "\dp information_schema.*"

Repeat the \dp statements for any additional schemas that contain locally defined security objects.

Repeat using \df+*.* to review ownership of PostgreSQL functions:

$ sudo su - postgres
$ psql -x -c "\df+ pg_catalog.*"
$ psql -x -c "\df+ information_schema.*"

Refer to the PostgreSQL online documentation for GRANT for help in interpreting the Access Privileges column
in the output from \du. Note that an entry starting with an equals sign indicates privileges granted to Public (all
users). By default, most of the tables and views in the pg_catalog and information_schema schemas can be read
by Public.

If any user besides the database administrator(s) is listed in access privileges and not documented, this is a
finding.

If security-related database objects or code are not kept separate, this is a finding.

Fix Text: Do not locate security-related database objects with application tables or schema.

Review any site-specific applications security modules built into the database: determine what schema they are
located in and take appropriate action.

Do not grant access to pg_catalog or information_schema to anyone but the database administrator(s). Access to
the database administrator account(s) must not be granted to anyone without official approval.

CCI: CCI-001084

Group ID (Vulid): V-261903
Group Title: SRG-APP-000243-DB-000128
Rule ID: SV-261903r1000714_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005400
Rule Title: Database contents must be protected from unauthorized and unintended information transfer by
enforcement of a data-transfer policy.

Vulnerability Discussion: Applications, including DBMSs, must prevent unauthorized and unintended
information transfer via shared system resources.

Data used for the development and testing of applications often involves copying data from production. It is
important that specific procedures exist for this process, to include the conditions under which such transfer may
take place, where the copies may reside, and the rules for ensuring sensitive data are not exposed.

Copies of sensitive data must not be misplaced or left in a temporary location without the proper controls.

Check Content:
Review the procedures for the refreshing of development/test data from production.

Review any scripts or code that exists for the movement of production data to development/test systems, or to
any other location or for any other purpose.

Verify that copies of production data are not left in unprotected locations.

If the code that exists for data movement does not comply with the organization-defined data transfer policy
and/or fails to remove any copies of production data from unprotected locations, this is a finding.

Fix Text: Modify any code used for moving data from production to development/test systems to comply with
the organization-defined data transfer policy, and to ensure copies of production data are not left in unsecured
locations.

CCI: CCI-001090

Group ID (Vulid): V-261904
Group Title: SRG-APP-000243-DB-000374
Rule ID: SV-261904r1000717_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005600
Rule Title: Access to database files must be limited to relevant processes and to authorized, administrative users.

Vulnerability Discussion: Applications, including DBMSs, must prevent unauthorized and unintended
information transfer via shared system resources. Permitting only PostgreSQL processes and authorized,
administrative users to have access to the files where the database resides helps ensure that those files are not
shared inappropriately and are not open to backdoor access and manipulation.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA.

Review the permissions granted to users by the operating system/file system on the database files, database log
files and database backup files.

To verify that all files are owned by the database administrator and have the correct permissions, run the
following as the database administrator (shown here as "postgres"):

$ sudo su - postgres
$ ls -lR ${PGDATA?}

If any files are not owned by the database administrator or allow anyone but the database administrator to
read/write/execute, this is a finding.

If any user/role that is not an authorized system administrator with a need-to-know or database administrator with
a need-to-know, or a system account for running PostgreSQL processes, is permitted to read/view any of these
files, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

Configure the permissions granted by the operating system/file system on the database files, database log files,
and database backup files so that only relevant system accounts and authorized system administrators and
database administrators with a need to know are permitted to read/view these files.

Any files (for example: extra configuration files) created in ${PGDATA?} must be owned by the database
administrator, with only owner permissions to read, write, and execute.

CCI: CCI-001090

Group ID (Vulid): V-261905
Group Title: SRG-APP-000251-DB-000160
Rule ID: SV-261905r1000720_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005700
Rule Title: PostgreSQL must check the validity of all data inputs except those specifically identified by the
organization.

Vulnerability Discussion: Invalid user input occurs when a user inserts data or characters into an application's
data entry fields and the application is unprepared to process that data. This results in unanticipated application
behavior, potentially leading to an application or information system compromise. Invalid user input is one of the
primary methods employed when attempting to compromise an application.

With respect to database management systems, one class of threat is known as SQL Injection, or more generally,
code injection. It takes advantage of the dynamic execution capabilities of various programming languages,
including dialects of SQL. Potentially, the attacker can gain unauthorized access to data, including security
settings, and severely corrupt or destroy the database.

Even when no such hijacking takes place, invalid input that gets recorded in the database, whether accidental or
malicious, reduces the reliability and usability of the system. Available protections include data types, referential
constraints, uniqueness constraints, range checking, and application-specific logic. Application-specific logic can
be implemented within the database in stored procedures and triggers, where appropriate.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate
from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed,
and must document what has been discovered.

Check Content:
Review PostgreSQL code (trigger procedures, functions), application code, settings, column and field definitions,
and constraints to determine whether the database is protected against invalid input.

If code exists that allows invalid data to be acted upon or input into the database, this is a finding.

If column/field definitions do not exist in the database, this is a finding.

If columns/fields do not contain constraints and validity checking where required, this is a finding.

Where a column/field is noted in the system documentation as necessarily free-form, even though its name and
context suggest that it should be strongly typed and constrained, the absence of these protections is not a finding.

Where a column/field is clearly identified by name, caption or context as Notes, Comments, Description, Text,
etc., the absence of these protections is not a finding.

Check application code that interacts with PostgreSQL for the use of prepared statements. If prepared statements
are not used, this is a finding.

Fix Text: Modify database code to properly validate data before it is put into the database or acted upon by the
database.

Modify the database to contain constraints and validity checking on database columns and tables that require
them for data integrity.

Use prepared statements when taking user input.

Do not allow general users direct console access to PostgreSQL.

CCI: CCI-001310

Group ID (Vulid): V-261906
Group Title: SRG-APP-000251-DB-000391
Rule ID: SV-261906r1000979_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005800
Rule Title: PostgreSQL and associated applications must reserve the use of dynamic code execution for
situations that require it.

Vulnerability Discussion: With respect to database management systems, one class of threat is known as SQL
Injection, or more generally, code injection. It takes advantage of the dynamic execution capabilities of various
programming languages, including dialects of SQL. In such cases, the attacker deduces the manner in which SQL
statements are being processed, either from inside knowledge or by observing system behavior in response to
invalid inputs. When the attacker identifies scenarios where SQL queries are being assembled by application code
(which may be within the database or separate from it) and executed dynamically, the attacker is then able to
craft input strings that subvert the intent of the query. Potentially, the attacker can gain unauthorized access to
data, including security settings, and severely corrupt or destroy the database.

The principal protection against code injection is not to use dynamic execution except where it provides
necessary functionality that cannot be used otherwise. Use strongly typed data items rather than general-purpose
strings as input parameters to task-specific, pre-compiled stored procedures and functions (and triggers).

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate
from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed and
must document what has been discovered.

Check Content:
Review PostgreSQL source code (trigger procedures, functions) and application source code, to identify cases of
dynamic code execution. Any user input should be handled through prepared statements.

If dynamic code execution is employed in circumstances where the objective could practically be satisfied by
static execution with strongly typed parameters, this is a finding.

Fix Text: Where dynamic code execution is employed in circumstances where the objective could practically be
satisfied by static execution with strongly typed parameters, modify the code to do so.

CCI: CCI-001310

Group ID (Vulid): V-261907
Group Title: SRG-APP-000251-DB-000392
Rule ID: SV-261907r1000726_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-005900
Rule Title: PostgreSQL and associated applications, when making use of dynamic code execution, must scan
input data for invalid values that may indicate a code injection attack.

Vulnerability Discussion: With respect to database management systems, one class of threat is known as SQL
Injection, or more generally, code injection. It takes advantage of the dynamic execution capabilities of various
programming languages, including dialects of SQL. In such cases, the attacker deduces the manner in which SQL
statements are being processed, either from inside knowledge or by observing system behavior in response to
invalid inputs. When the attacker identifies scenarios where SQL queries are being assembled by application code
(which may be within the database or separate from it) and executed dynamically, the attacker is then able to
craft input strings that subvert the intent of the query. Potentially, the attacker can gain unauthorized access to
data, including security settings, and severely corrupt or destroy the database.

The principal protection against code injection is not to use dynamic execution except where it provides
necessary functionality that cannot be used otherwise. Use strongly typed data items rather than general-purpose
strings as input parameters to task-specific, pre-compiled stored procedures and functions (and triggers).

When dynamic execution is necessary, ways to mitigate the risk include the following, which should be
implemented both in the on-screen application and at the database level, in the stored procedures:
-- Allow strings as input only when necessary.
-- Rely on data typing to validate numbers, dates, etc. Do not accept invalid values. If substituting other values
for them, think carefully about whether this could be subverted.
-- Limit the size of input strings to what is truly necessary.
-- If single quotes/apostrophes, double quotes, semicolons, equals signs, angle brackets, or square brackets will
never be valid as input, reject them.
-- If comment markers will never be valid as input, reject them. In SQL, these are -- or /* */
-- If HTML and XML tags, entities, comments, etc., will never be valid, reject them.
-- If wildcards are present, reject them unless truly necessary. In SQL these are the underscore and the percentage
sign, and the word ESCAPE is also a clue that wildcards are in use.
-- If SQL key words, such as SELECT, INSERT, UPDATE, DELETE, CREATE, ALTER, DROP, ESCAPE,
UNION, GRANT, REVOKE, DENY, MODIFY will never be valid, reject them. Use case-insensitive
comparisons when searching for these. Bear in mind that some of these words, particularly Grant (as a person's
name), could also be valid input.
-- If there are range limits on the values that may be entered, enforce those limits.
-- Institute procedures for inspection of programs for correct use of dynamic coding, by a party other than the

developer.
-- Conduct rigorous testing of program modules that use dynamic coding, searching for ways to subvert the
intended use.
-- Record the inspection and testing in the system documentation.
-- Bear in mind that all this applies not only to screen input, but also to the values in an incoming message to a
web service or to a stored procedure called by a software component that has not itself been hardened in these
ways. Not only can the caller be subject to such vulnerabilities; it may itself be the attacker.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate
from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed,
and must document what has been discovered.

Check Content:
Review PostgreSQL source code (trigger procedures, functions) and application source code to identify cases of
dynamic code execution.

If dynamic code execution is employed without protective measures against code injection, this is a finding.

Fix Text: Where dynamic code execution is used, modify the code to implement protections against code
injection (i.e., prepared statements).

CCI: CCI-001310

Group ID (Vulid): V-261908
Group Title: SRG-APP-000266-DB-000162
Rule ID: SV-261908r1000729_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006000
Rule Title: PostgreSQL must provide nonprivileged users with error messages that provide information
necessary for corrective actions without revealing information that could be exploited by adversaries.

Vulnerability Discussion: Any DBMS or associated application providing too much information in error
messages on the screen or printout risks compromising the data and security of the system. The structure and
content of error messages need to be carefully considered by the organization and development team.

Databases can inadvertently provide a wealth of information to an attacker through improperly handled error
messages. In addition to sensitive business or personal information, database errors can provide host names, IP
addresses, usernames, and other system information not required for troubleshooting but very useful to someone
targeting the system.

Carefully consider the structure/content of error messages. The extent to which information systems are able to
identify and handle error conditions is guided by organizational policy and operational requirements. Information
that could be exploited by adversaries includes, for example, logon attempts with passwords entered by mistake
as the username, mission/business information that can be derived from (if not stated explicitly by) information
recorded, and personal information, such as account numbers, social security numbers, and credit card numbers.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate

from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed,
and must document what has been discovered.

Check Content:
To check the level of detail for errors exposed to clients, as the DBA (shown here as "postgres"), run the
following:

$ sudo su - postgres
$ psql -c "SHOW client_min_messages;"

If client_min_messages is not set to error, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

As the database administrator, edit "postgresql.conf":

$ sudo su - postgres
$ vi $PGDATA/postgresql.conf

Change the client_min_messages parameter to be "error":

client_min_messages = error

Reload the server with the new configuration (this just reloads settings currently in memory; it will not cause an
interruption):

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001312

Group ID (Vulid): V-261909
Group Title: SRG-APP-000267-DB-000163
Rule ID: SV-261909r1000980_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006100
Rule Title: PostgreSQL must reveal detailed error messages only to the information system security officer
(ISSO), information system security manager (ISSM), system administrator (SA), and database administrator
(DBA).

Vulnerability Discussion: If the DBMS provides too much information in error logs and administrative
messages to the screen, this could lead to compromise. The structure and content of error messages need to be
carefully considered by the organization and development team. The extent to which the information system is
able to identify and handle error conditions is guided by organizational policy and operational requirements.

Some default PostgreSQL error messages can contain information that could aid an attacker in, among other
things, identifying the database type, host address, or state of the database. Custom errors may contain sensitive
customer information.

It is important that detailed error messages be visible only to those who are authorized to view them; that general
users receive only generalized acknowledgment that errors have occurred; and that these generalized messages
appear only when relevant to the user's task. For example, a message along the lines of, "An error has occurred.
Unable to save your changes. If this problem persists, please contact your help desk" would be relevant. A
message such as "Warning: your transaction generated a large number of page splits" would likely not be
relevant.

Administrative users authorized to review detailed error messages typically are the ISSO, ISSM, SA, and DBA.
Other individuals or roles may be specified according to organization-specific needs, with appropriate approval.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the DBA is organizationally separate from the application
developers, and may have limited, if any, access to source code. Nevertheless, protections of this type are so
important to the secure operation of databases that they must not be ignored. At a minimum, the DBA must
attempt to obtain assurances from the development organization that this issue has been addressed and must
document what has been discovered.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for instructions on configuring PGLOG.

Check PostgreSQL settings and custom database code to determine if detailed error messages are ever displayed
to unauthorized individuals.

To check the level of detail for errors exposed to clients, as the DBA (shown here as "postgres"), run the
following:

$ sudo su - postgres
$ psql -c "SHOW client_min_messages;"

If client_min_messages is not set to error, this is a finding.

If detailed error messages are displayed to individuals not authorized to view them, this is a finding.

stderr Logging

Logs may contain detailed information and should only be accessible by the database owner.

As the database administrator, verify the following settings of logs.

Note: Consult the organization's documentation on acceptable log privileges.

$ sudo su - postgres
$ psql -c "SHOW log_file_mode;"

Verify the log files have the set configurations.

$ ls -l ${PGLOG?}
total 32
-rw-------. 1 postgres postgres 0 Apr 8 00:00 postgresql-Fri.log
-rw-------. 1 postgres postgres 8288 Apr 11 17:36 postgresql-Mon.log
-rw-------. 1 postgres postgres 0 Apr 9 00:00 postgresql-Sat.log

-rw-------. 1 postgres postgres 0 Apr 10 00:00 postgresql-Sun.log
-rw-------. 1 postgres postgres 16212 Apr 7 17:05 postgresql-Thu.log
-rw-------. 1 postgres postgres 1130 Apr 6 17:56 postgresql-Wed.log

If logs are not owned by the database administrator or have permissions that are not 0600, this is a finding.

syslog Logging

If PostgreSQL is configured to use syslog for logging, consult organization location and permissions for syslog
log files. If the logs are not owned by root or have permissions that are not 0600, this is a finding.

Fix Text: Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for
instructions on configuring PGDATA.

To set the level of detail for error messages exposed to clients, as the DBA (shown here as "postgres"), run the
following commands:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
client_min_messages = error

CCI: CCI-001314

Group ID (Vulid): V-261910
Group Title: SRG-APP-000295-DB-000305
Rule ID: SV-261910r1000735_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006200
Rule Title: PostgreSQL must automatically terminate a user session after organization-defined conditions or
trigger events requiring session disconnect.

Vulnerability Discussion: This addresses the termination of user-initiated logical sessions in contrast to the
termination of network connections that are associated with communications sessions (i.e., network disconnect).
A logical session (for local, network, and remote access) is initiated whenever a user (or process acting on behalf
of a user) accesses an organizational information system. Such user sessions can be terminated (and thus
terminate user access) without terminating network sessions.

Session termination ends all processes associated with a user's logical session except those batch processes/jobs
that are specifically created by the user (i.e., session owner) to continue after the session is terminated.

Conditions or trigger events requiring automatic session termination can include, for example, organization-
defined periods of user inactivity, targeted responses to certain types of incidents, and time-of-day restrictions on
information system use.

This capability is typically reserved for specific cases where the system owner, data owner, or organization
requires additional assurance.

Check Content:
Review system documentation to obtain the organization's definition of circumstances requiring automatic
session termination. If the documentation explicitly states that such termination is not required or is prohibited,
this is not a finding.

If the documentation requires automatic session termination, but PostgreSQL is not configured accordingly, this
is a finding.

Fix Text: Configure PostgreSQL to automatically terminate a user session after organization-defined conditions
or trigger events requiring session termination.

Examples follow.

Change a role to nologin and disconnect the user

ALTER ROLE '<username>' NOLOGIN;
SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE usename='<usename>';

Disconnecting users during a specific time range
Refer to supplementary content APPENDIX-A for a bash script for this example.

The script found in APPENDIX-A using the -l command can disable all users with rolcanlogin=t from logging in.
The script keeps track of who it disables in a .restore_login file. After the specified time is over, the same script
can be run with the -r command to restore all login connections.

This script would be added to a cron job:

lock at 5 am every day of the week, month, year at the 0 minute mark.
0 5 * * * postgres /var/lib/pgsql/no_login.sh -d postgres -l
restore at 5 pm every day of the week, month, year at the 0 minute mark.
0 17 * * * postgres /var/lib/pgsql/no_login.sh -d postgres -r

CCI: CCI-002361

Group ID (Vulid): V-261911
Group Title: SRG-APP-000311-DB-000308
Rule ID: SV-261911r1000738_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006400
Rule Title: PostgreSQL must associate organization-defined types of security labels having organization-defined
security label values with information in storage.

Vulnerability Discussion: Without the association of security labels to information, there is no basis for
PostgreSQL to make security-related access-control decisions.

Security labels are abstractions representing the basic properties or characteristics of an entity (e.g., subjects and
objects) with respect to safeguarding information.

These labels are typically associated with internal data structures (e.g., tables, rows) within the database and are
used to enable the implementation of access control and flow control policies, reflect special dissemination,
handling or distribution instructions, or support other aspects of the information security policy.

One example includes marking data as classified or CUI. These security labels may be assigned manually or
during data processing, but, either way, it is imperative these assignments are maintained while the data is in
storage. If the security labels are lost when the data is stored, there is the risk of a data compromise.

The mechanism used to support security labeling may be a feature of the DBMS product, a third-party product,
or custom application code.

Check Content:
If security labeling is not required, this is not a finding.

As the database administrator (shown here as "postgres"), run the following SQL against each table that requires
security labels:

$ sudo su - postgres
$ psql -c "\d+ <schema_name>.<table_name>"

If security labeling is required and the results of the SQL above do not show a policy attached to the table, this is
a finding.

If security labeling is required and not implemented according to the system documentation, such as SSP, this is a
finding.

If security labeling requirements have been specified, but the security labeling is not implemented or does not
reliably maintain labels on information in storage, this is a finding.

Fix Text: In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security (RLS).

RLS policies can be very different depending on their use case. For one example of using RLS for Security
Labels, refer to supplementary content APPENDIX-D.

CCI: CCI-002262

Group ID (Vulid): V-261912
Group Title: SRG-APP-000313-DB-000309
Rule ID: SV-261912r1000741_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006500
Rule Title: PostgreSQL must associate organization-defined types of security labels having organization-defined
security label values with information in process.

Vulnerability Discussion: Without the association of security labels to information, there is no basis for
PostgreSQL to make security-related access-control decisions.

Security labels are abstractions representing the basic properties or characteristics of an entity (e.g., subjects and
objects) with respect to safeguarding information.

These labels are typically associated with internal data structures (e.g., tables, rows) within the database and are
used to enable the implementation of access control and flow control policies, reflect special dissemination,
handling or distribution instructions, or support other aspects of the information security policy.

One example includes marking data as classified or CUI. These security labels may be assigned manually or
during data processing, but, either way, it is imperative these assignments are maintained while the data is in

storage. If the security labels are lost when the data is stored, there is the risk of a data compromise.

The mechanism used to support security labeling may be a feature of the DBMS product, a third-party product,
or custom application code.

Check Content:
If security labeling is not required, this is not a finding.

As the database administrator (shown here as "postgres"), run the following SQL against each table that requires
security labels:

$ sudo su - postgres
$ psql -c "\d+ <schema_name>.<table_name>"

If security labeling requirements have been specified, but the security labeling is not implemented or does not
reliably maintain labels on information in process, this is a finding.

Fix Text: In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security (RLS).

RLS policies can be very different depending on their use case. For one example of using RLS for Security
Labels, refer to supplementary content APPENDIX-D.

CCI: CCI-002263

Group ID (Vulid): V-261913
Group Title: SRG-APP-000314-DB-000310
Rule ID: SV-261913r1000744_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006600
Rule Title: PostgreSQL must associate organization-defined types of security labels having organization-defined
security label values with information in transmission.

Vulnerability Discussion: Without the association of security labels to information, there is no basis for
PostgreSQL to make security-related access-control decisions.

Security labels are abstractions representing the basic properties or characteristics of an entity (e.g., subjects and
objects) with respect to safeguarding information.

These labels are typically associated with internal data structures (e.g., tables, rows) within the database and are
used to enable the implementation of access control and flow control policies, reflect special dissemination,
handling or distribution instructions, or support other aspects of the information security policy.

One example includes marking data as classified or CUI. These security labels may be assigned manually or
during data processing, but, either way, it is imperative these assignments are maintained while the data is in
storage. If the security labels are lost when the data is stored, there is the risk of a data compromise.

The mechanism used to support security labeling may be a feature of the DBMS product, a third-party product,
or custom application code.

Check Content:
If security labeling is not required, this is not a finding.

As the database administrator (shown here as "postgres"), run the following SQL against each table that requires
security labels:

$ sudo su - postgres
$ psql -c "\d+ <schema_name>.<table_name>"

If security labeling is required and the results of the SQL above do not show a policy attached to the table, this is
a finding.

If security labeling is required and not implemented according to the system documentation, such as SSP, this is a
finding.

If security labeling requirements have been specified, but the security labeling is not implemented or does not
reliably maintain labels on information in storage, this is a finding.

Fix Text: In addition to the SQL-standard privilege system available through GRANT, tables can have row
security policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security (RLS).

RLS policies can be very different depending on their use case. For one example of using RLS for Security
Labels, refer to supplementary content APPENDIX-D.

CCI: CCI-002264

Group ID (Vulid): V-261914
Group Title: SRG-APP-000328-DB-000301
Rule ID: SV-261914r1000747_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006700
Rule Title: PostgreSQL must enforce discretionary access control policies, as defined by the data owner, over
defined subjects and objects.

Vulnerability Discussion: Discretionary Access Control (DAC) is based on the notion that individual users are
"owners" of objects and therefore have discretion over who should be authorized to access the object and in
which mode (e.g., read or write). Ownership is usually acquired as a consequence of creating the object or via
specified ownership assignment. DAC allows the owner to determine who will have access to objects they
control. An example of DAC includes user-controlled table permissions.

When discretionary access control policies are implemented, subjects are not constrained with regard to what
actions they can take with information for which they have already been granted access. Thus, subjects that have
been granted access to information are not prevented from passing (i.e., the subjects have the discretion to pass)
the information to other subjects or objects.

A subject that is constrained in its operation by Mandatory Access Control policies is still able to operate under
the less rigorous constraints of this requirement. Thus, while Mandatory Access Control imposes constraints
preventing a subject from passing information to another subject operating at a different sensitivity level, this
requirement permits the subject to pass the information to any subject at the same sensitivity level.

The policy is bounded by the information system boundary. Once the information is passed outside of the control
of the information system, additional means may be required to ensure the constraints remain in effect. While the
older, more traditional definitions of discretionary access control require identity-based access control, that
limitation is not required for this use of discretionary access control.

Check Content:
Review system documentation to identify the required discretionary access control (DAC).

Review the security configuration of the database and PostgreSQL. If applicable, review the security
configuration of the application(s) using the database.

If the discretionary access control defined in the documentation is not implemented in the security configuration,
this is a finding.

If any database objects are found to be owned by users not authorized to own database objects, this is a finding.

To check the ownership of objects in the database, as the database administrator, run the following:

$ sudo su - postgres
$ psql -X -c '\dnS'
$ psql -x -c "\dt *.*"
$ psql -X -c '\dsS'
$ psql -x -c "\dv *.*"
$ psql -x -c "\df+ *.*"

If any role is given privileges to objects it should not have, this is a finding.

Fix Text: Implement the organization's DAC policy in the security configuration of the database and
PostgreSQL, and, if applicable, the security configuration of the application(s) using the database.

To GRANT privileges to roles, as the database administrator (shown here as "postgres"), run statements like the
following examples:

$ sudo su - postgres
$ psql -c "CREATE SCHEMA test"
$ psql -c "GRANT CREATE ON SCHEMA test TO bob"
$ psql -c "CREATE TABLE test.test_table(id INT)"
$ psql -c "GRANT SELECT ON TABLE test.test_table TO bob"

To REVOKE privileges to roles, as the database administrator (shown here as "postgres"), run statements like the
following examples:

$ psql -c "REVOKE SELECT ON TABLE test.test_table FROM bob"
$ psql -c "REVOKE CREATE ON SCHEMA test FROM bob"

CCI: CCI-002165

Group ID (Vulid): V-261915
Group Title: SRG-APP-000340-DB-000304
Rule ID: SV-261915r1000750_rule

Severity: CAT II
Rule Version (STIG-ID): CD16-00-006800
Rule Title: PostgreSQL must prevent nonprivileged users from executing privileged functions, to include
disabling, circumventing, or altering implemented security safeguards/countermeasures.

Vulnerability Discussion: Preventing nonprivileged users from executing privileged functions mitigates the risk
that unauthorized individuals or processes may gain unnecessary access to information or privileges.

System documentation should include a definition of the functionality considered privileged.

Depending on circumstances, privileged functions can include, for example, establishing accounts, performing
system integrity checks, or administering cryptographic key management activities. Nonprivileged users are
individuals that do not possess appropriate authorizations. Circumventing intrusion detection and prevention
mechanisms or malicious code protection mechanisms are examples of privileged functions that require
protection from nonprivileged users.

A privileged function in the PostgreSQL/database context is any operation that modifies the structure of the
database, its built-in logic, or its security settings. This would include all Data Definition Language (DDL)
statements and all security-related statements. In an SQL environment, it encompasses, but is not necessarily
limited to:
CREATE
ALTER
DROP
GRANT
REVOKE
DENY

There may also be Data Manipulation Language (DML) statements that, subject to context, should be regarded as
privileged. Possible examples include:

TRUNCATE TABLE;
DELETE, or
DELETE affecting more than n rows, for some n, or
DELETE without a WHERE clause;

UPDATE or
UPDATE affecting more than n rows, for some n, or
UPDATE without a WHERE clause;

any SELECT, INSERT, UPDATE, or DELETE to an application-defined security table executed by other than a
security principal.

Depending on the capabilities of the DBMS and the design of the database and associated applications, the
prevention of unauthorized use of privileged functions may be achieved by means of PostgreSQL security
features, database triggers, other mechanisms, or a combination of these.

Check Content:
Review the system documentation to obtain the definition of the PostgreSQL functionality considered privileged
in the context of the system in question.

Review the PostgreSQL security configuration and/or other means used to protect privileged functionality from

unauthorized use.

If the configuration does not protect all of the actions defined as privileged, this is a finding.

If PostgreSQL instance uses procedural languages, such as pl/Python or pl/R, without Authorizing Official (AO)
authorization, this is a finding.

Fix Text: Configure PostgreSQL security to protect all privileged functionality.

If pl/R and pl/Python are used, document their intended use, document users that have access to pl/R and
pl/Python, as well as their business use case, such as data-analytics or data-mining. Because of the risks
associated with using pl/R and pl/Python, their use must have AO risk acceptance.

To remove unwanted extensions, use:

DROP EXTENSION <extension_name>

To remove unwanted privileges from a role, use the REVOKE command.

Refer to the PostgreSQL documentation for more details: http://www.postgresql.org/docs/current/static/sql-
revoke.html.

CCI: CCI-002235

Group ID (Vulid): V-261916
Group Title: SRG-APP-000342-DB-000302
Rule ID: SV-261916r1000981_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-006900
Rule Title: Execution of software modules (to include stored procedures, functions, and triggers) with elevated
privileges must be restricted to necessary cases only.

Vulnerability Discussion: In certain situations, to provide required functionality, PostgreSQL needs to execute
internal logic (stored procedures, functions, triggers, etc.) and/or external code modules with elevated privileges.
However, if the privileges required for execution are at a higher level than the privileges assigned to
organizational users invoking the functionality applications/programs, those users are indirectly provided with
greater privileges than assigned by organizations.

Privilege elevation must be used only where necessary and protected from misuse.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate
from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed and
must document what has been discovered.

Check Content:
Functions in PostgreSQL can be created with the SECURITY DEFINER option. When SECURITY DEFINER
functions are executed by a user, said function is run with the privileges of the user who created it.

To list all functions that have SECURITY DEFINER, as, the DBA (shown here as "postgres"), run the following
SQL:

$ sudo su - postgres
$ psql -c "SELECT nspname, proname, proargtypes, prosecdef, rolname, proconfig FROM pg_proc p JOIN
pg_namespace n ON p.pronamespace = n.oid JOIN pg_authid a ON a.oid = p.proowner WHERE prosecdef OR
NOT proconfig IS NULL"

In the query results, a prosecdef value of "t" on a row indicates that that function uses privilege elevation.

If elevation of PostgreSQL privileges is used but not documented, this is a finding.

If elevation of PostgreSQL privileges is documented, but not implemented as described in the documentation,
this is a finding.

If the privilege-elevation logic can be invoked in ways other than intended, or in contexts other than intended, or
by subjects/principals other than intended, this is a finding.

Fix Text: Determine where, when, how, and by what principals/subjects elevated privilege is needed.

To change a SECURITY DEFINER function to SECURITY INVOKER, as the database administrator (shown
here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -c "ALTER FUNCTION <function_name> SECURITY INVOKER"

CCI: CCI-002233

Group ID (Vulid): V-261917
Group Title: SRG-APP-000356-DB-000314
Rule ID: SV-261917r1000962_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007000
Rule Title: PostgreSQL must use centralized management of the content captured in audit records generated by
all components of PostgreSQL.

Vulnerability Discussion: Without the ability to centrally manage the content captured in the audit records,
identification, troubleshooting, and correlation of suspicious behavior would be difficult and could lead to a
delayed or incomplete analysis of an ongoing attack.

The content captured in audit records must be managed from a central location (necessitating automation).
Centralized management of audit records and logs provides for efficiency in maintenance and management of
records, as well as the backup and archiving of those records.

PostgreSQL may write audit records to database tables, to files in the file system, to other kinds of local
repository, or directly to a centralized log management system. Whatever the method used, it must be compatible
with offloading the records to the centralized system.

Check Content:
On Unix systems, PostgreSQL can be configured to use stderr, csvlog, and syslog. To send logs to a centralized
location, syslog should be used.

As the database owner (shown here as "postgres"), ensure PostgreSQL uses syslog by running the following
SQL:

$ sudo su - postgres
$ psql -c "SHOW log_destination"

As the database owner (shown here as "postgres"), check to which log facility PostgreSQL is configured by
running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW syslog_facility"

Check with the organization to refer to how syslog facilities are defined in their organization.

If PostgreSQL audit records are not written directly to or systematically transferred to a centralized log
management system, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

With logging enabled, as the database owner (shown here as "postgres"), configure the following parameters in
postgresql.conf:

Note: Consult the organization on how syslog facilities are defined in the syslog daemon configuration.

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_destination = 'syslog'
syslog_facility = 'LOCAL0'
syslog_ident = 'postgres'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001844

Group ID (Vulid): V-261918
Group Title: SRG-APP-000357-DB-000316
Rule ID: SV-261918r1000759_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007200
Rule Title: PostgreSQL must allocate audit record storage capacity in accordance with organization-defined
audit record storage requirements.

Vulnerability Discussion: In order to ensure sufficient storage capacity for the audit logs, PostgreSQL must be
able to allocate audit record storage capacity. Although another requirement (SRG-APP-000515-DB-000318)
mandates that audit data be offloaded to a centralized log management system, it remains necessary to provide

space on the database server to serve as a buffer against outages and capacity limits of the offloading mechanism.

The task of allocating audit record storage capacity is usually performed during initial installation of PostgreSQL
and is closely associated with the DBA and system administrator roles. The DBA or system administrator will
usually coordinate the allocation of physical drive space with the application owner/installer and the application
will prompt the installer to provide the capacity information, the physical location of the disk, or both.

In determining the capacity requirements, consider such factors as: total number of users; expected number of
concurrent users during busy periods; number and type of events being monitored; types and amounts of data
being captured; the frequency/speed with which audit records are offloaded to the central log management
system; and any limitations that exist on PostgreSQL's ability to reuse the space formerly occupied by offloaded
records.

Check Content:
Investigate whether there have been any incidents where PostgreSQL ran out of audit log space since the last
time the space was allocated or other corrective measures were taken.

If there have been incidents where PostgreSQL ran out of audit log space, this is a finding.

Fix Text: Allocate sufficient audit file/table space to support peak demand.

CCI: CCI-001849

Group ID (Vulid): V-261919
Group Title: SRG-APP-000359-DB-000319
Rule ID: SV-261919r1000762_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007300
Rule Title: PostgreSQL must provide a warning to appropriate support staff when allocated audit record storage
volume reaches 75 percent of maximum audit record storage capacity.

Vulnerability Discussion: Organizations are required to use a central log management system so under normal
conditions, the audit space allocated to PostgreSQL on its own server will not be an issue. However, space will
still be required on the PostgreSQL server for audit records in transit, and, under abnormal conditions, this could
fill up. Since a requirement exists to halt processing upon audit failure, a service outage would result.

If support personnel are not notified immediately upon storage volume utilization reaching 75%, they are unable
to plan for storage capacity expansion.

The appropriate support staff include, at a minimum, the information system security officer (ISSO) and the
database administrator (DBA)/system administrator (SA).

Check Content:
Review system configuration.

If no script or tool is monitoring the partition for the PostgreSQL log directories, this is a finding.

If appropriate support staff are not notified immediately upon storage volume utilization reaching 75 percent, this
is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to

APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure the system to notify appropriate support staff immediately upon storage volume utilization reaching 75
percent.

PostgreSQL does not monitor storage; however, it is possible to monitor storage with a script.

Example Monitoring Script

#!/bin/bash

PGDATA=/var/lib/pgsql/${PGVER?}/data
CURRENT=$(df ${PGDATA?} | grep / | awk '{ print $5}' | sed 's/%//g')
THRESHOLD=75

if ["$CURRENT" -gt "$THRESHOLD"] ; then
mail -s 'Disk Space Alert' mail@support.com << EOF
The data directory volume is almost full. Used: $CURRENT
EOF
fi

Schedule this script in cron to run around the clock.

CCI: CCI-001855

Group ID (Vulid): V-261920
Group Title: SRG-APP-000360-DB-000320
Rule ID: SV-261920r1000973_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007400
Rule Title: PostgreSQL must provide an immediate real-time alert to appropriate support staff of all audit log
failures.

Vulnerability Discussion: It is critical for the appropriate personnel to be aware if a system is at risk of failing to
process audit logs as required. Without a real-time alert, security personnel may be unaware of an impending
failure of the audit capability, and system operation may be adversely affected.

The appropriate support staff include, at a minimum, the information system security officer (ISSO) and the
database administrator (DBA)/system administrator (SA).

A failure of database auditing will result in either the database continuing to function without auditing or in a
complete halt to database operations. When audit processing fails, appropriate personnel must be alerted
immediately to avoid further downtime or unaudited transactions.

Alerts provide organizations with urgent messages. Real-time alerts provide these messages immediately (i.e., the
time from event detection to alert occurs in seconds or less).

Check Content:
Review PostgreSQL, OS, or third-party logging software settings to determine whether a real-time alert will be
sent to the appropriate personnel when auditing fails for any reason.

If real-time alerts are not sent upon auditing failure, this is a finding.

Fix Text: Configure the system to provide an immediate real-time alert to appropriate support staff when an audit
log failure occurs.

It is possible to create scripts or implement third-party tools to enable real-time alerting for audit failures in
PostgreSQL.

CCI: CCI-001858

Group ID (Vulid): V-261921
Group Title: SRG-APP-000374-DB-000322
Rule ID: SV-261921r1000994_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007500
Rule Title: PostgreSQL must record time stamps in audit records and application data that can be mapped to
Coordinated Universal Time (UTC), formerly Greenwich Mean Time (GMT).

Vulnerability Discussion: If time stamps are not consistently applied and there is no common time reference, it
is difficult to perform forensic analysis.

Time stamps generated by PostgreSQL must include date and time. Time is commonly expressed in UTC, a
modern continuation of GMT, or local time with an offset from UTC.

Some DBMS products offer a data type called TIMESTAMP that is not a representation of date and time. Rather,
it is a database state counter and does not correspond to calendar and clock time. This requirement does not refer
to that meaning of TIMESTAMP.

Check Content:
When a PostgreSQL cluster is initialized using initdb, the PostgreSQL cluster will be configured to use the same
time zone as the target server.

As the database administrator (shown here as "postgres"), check the current log_timezone setting by running the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_timezone"

log_timezone

UTC
(1 row)

If log_timezone is not set to the desired time zone, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To change log_timezone in postgresql.conf to use a different time zone for logs, as the database administrator
(shown here as "postgres"), run the following:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_timezone='UTC'

Restart the database:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001890

Group ID (Vulid): V-261922
Group Title: SRG-APP-000375-DB-000323
Rule ID: SV-261922r1000771_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007600
Rule Title: PostgreSQL must generate time stamps for audit records and application data with a minimum
granularity of one second.

Vulnerability Discussion: Without sufficient granularity of time stamps, it is not possible to adequately
determine the chronological order of records.

Time stamps generated by PostgreSQL must include date and time. Granularity of time measurements refers to
the precision available in time stamp values. Granularity coarser than one second is not sufficient for audit trail
purposes. Time stamp values are typically presented with three or more decimal places of seconds; however, the
actual granularity may be coarser than the apparent precision. For example, SQL Server's
GETDATE()/CURRENT_TMESTAMP values are presented to three decimal places, but the granularity is not
one millisecond: it is about 1/300 of a second.

Some DBMS products offer a data type called TIMESTAMP that is not a representation of date and time. Rather,
it is a database state counter and does not correspond to calendar and clock time. This requirement does not refer
to that meaning of TIMESTAMP.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), verify the current log_line_prefix setting by running
the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

If log_line_prefix does not contain %m, this is a finding.

Check the logs to verify time stamps are being logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-02-23 12:53:33.947 EDT postgres postgres 570bd68d.3912 >LOG: connection authorized: user=postgres

database=postgres
< 2024-02-23 12:53:41.576 EDT postgres postgres 570bd68d.3912 >LOG: AUDIT:
SESSION,1,1,DDL,CREATE TABLE,,,CREATE TABLE test_srg(id INT);,<none>
< 2024-02-23 12:53:44.372 EDT postgres postgres 570bd68d.3912 >LOG: disconnection: session time:
0:00:10.426 user=postgres database=postgres host=[local]

If time stamps are not being logged, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL will not log anything if logging is not enabled. To ensure logging is enabled, see the instructions in
the supplementary content APPENDIX-C.

If logging is enabled, the following configurations must be made to log events with time stamps:

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add %m to log_line_prefix to enable time stamps with milliseconds:

log_line_prefix = '< %m >'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001889

Group ID (Vulid): V-261923
Group Title: SRG-APP-000378-DB-000365
Rule ID: SV-261923r1000993_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007700
Rule Title: PostgreSQL must prohibit user installation of logic modules (stored procedures, functions, triggers,
views, etc.) without explicit privileged status.

Vulnerability Discussion: Allowing regular users to install software without explicit privileges creates the risk
that untested or potentially malicious software will be installed on the system. Explicit privileges (escalated or
administrative privileges) provide the regular user with explicit capabilities and control that exceed the rights of a
regular user.

PostgreSQL functionality and the nature and requirements of databases will vary; so while users are not
permitted to install unapproved software, there may be instances where the organization allows the user to install
approved software packages such as from an approved software repository. The requirements for production
servers will be more restrictive than those used for development and research.

PostgreSQL must enforce software installation by users based upon what types of software installations are
permitted (e.g., updates and security patches to existing software) and what types of installations are prohibited

(e.g., software whose pedigree with regard to being potentially malicious is unknown or suspect) by the
organization.

In the case of a database management system, this requirement covers stored procedures, functions, triggers,
views, etc.

Check Content:
If PostgreSQL supports only software development, experimentation and/or developer-level testing (that is,
excluding production systems, integration testing, stress testing, and user acceptance testing), this is not a finding.

Review PostgreSQL and database security settings with respect to nonadministrative users ability to create, alter,
or replace logic modules, to include but not necessarily only stored procedures, functions, triggers, and views.

To list the privileges for all tables and schemas, as the database administrator (shown here as "postgres"), run the
following:

$ sudo su - postgres
$ psql -c "\dp"
$ psql -c "\dn+"

The privileges are as follows:

rolename=xxxx -- privileges granted to a role
=xxxx -- privileges granted to PUBLIC

r -- SELECT ("read")
w -- UPDATE ("write")
a -- INSERT ("append")
d -- DELETE
D -- TRUNCATE
x -- REFERENCES
t -- TRIGGER
X -- EXECUTE
U -- USAGE
C -- CREATE
c -- CONNECT
T -- TEMPORARY
arwdDxt -- ALL PRIVILEGES (for tables, varies for other objects)
* -- grant option for preceding privilege

/yyyy -- role that granted this privilege

If any such permissions exist and are not documented and approved, this is a finding.

Fix Text: Document and obtain approval for any nonadministrative users who require the ability to create, alter,
or replace logic modules.

Implement the approved permissions. Revoke any unapproved permissions.

CCI: CCI-001812

Group ID (Vulid): V-261924
Group Title: SRG-APP-000380-DB-000360
Rule ID: SV-261924r1000777_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-007800
Rule Title: PostgreSQL must enforce access restrictions associated with changes to the configuration of the
DBMS or database(s).

Vulnerability Discussion: Failure to provide logical access restrictions associated with changes to configuration
may have significant effects on the overall security of the system.

When dealing with access restrictions pertaining to change control, it should be noted that any changes to the
hardware, software, and/or firmware components of the information system can potentially have significant
effects on the overall security of the system.

Accordingly, only qualified and authorized individuals should be allowed to obtain access to system components
for the purposes of initiating changes, including upgrades and modifications.

Check Content:
To list all the permissions of individual roles, as the database administrator (shown here as "postgres"), run the
following SQL:

$ sudo su - postgres
$ psql -c "\du"

If any role has SUPERUSER that should not, this is a finding.

List all the permissions of databases and schemas by running the following SQL:

$ sudo su - postgres
$ psql -c "\l"
$ psql -c "\dn+"

If any database or schema has update ("W") or create ("C") privileges and should not, this is a finding.

Fix Text: Configure PostgreSQL to enforce access restrictions associated with changes to the configuration of
PostgreSQL or database(s).

Use ALTER ROLE to remove accesses from roles:

$ psql -c "ALTER ROLE <role_name> NOSUPERUSER"

Use REVOKE to remove privileges from databases and schemas:

$ psql -c "REVOKE ALL PRIVILEGES ON <table> FROM <role_name>"

CCI: CCI-001813

Group ID (Vulid): V-261925
Group Title: SRG-APP-000381-DB-000361
Rule ID: SV-261925r1000780_rule

Severity: CAT II
Rule Version (STIG-ID): CD16-00-007900
Rule Title: PostgreSQL must produce audit records of its enforcement of access restrictions associated with
changes to the configuration of PostgreSQL or database(s).

Vulnerability Discussion: Without auditing the enforcement of access restrictions against changes to
configuration, it would be difficult to identify attempted attacks and an audit trail would not be available for
forensic investigation for after-the-fact actions.

Enforcement actions are the methods or mechanisms used to prevent unauthorized changes to configuration
settings. Enforcement action methods may be as simple as denying access to a file based on the application of file
permissions (access restriction). Audit items may consist of lists of actions blocked by access restrictions or
changes identified after the fact.

Check Content:
Note: The following instructions use the PGDATA environment variable. Refer to APPENDIX-F for instructions
on configuring PGDATA and APPENDIX-I for PGLOG.

To verify that system denies are logged when unprivileged users attempt to change database configuration, as the
database administrator (shown here as "postgres"), run the following commands:

$ sudo su - postgres
$ psql

Create a role with no privileges, change the current role to that user, and attempt to change a configuration by
running the following SQL:

CREATE ROLE bob;
SET ROLE bob;
SET pgaudit.role='test';
RESET ROLE;
DROP ROLE bob;

Check ${PGLOG?} (use the latest log):

$ cat ${PGDATA?}/${PGLOG?}/postgresql-Thu.log
< 2024-01-28 17:57:34.092 UTC bob postgres: >ERROR: permission denied to set parameter "pgaudit.role"
< 2024-01-28 17:57:34.092 UTC bob postgres: >STATEMENT: SET pgaudit.role='test';

If the denial is not logged, this is a finding.

By default PostgreSQL configuration files are owned by the Postgres user and cannot be edited by nonprivileged
users:

$ ls -la ${PGDATA?} | grep postgresql.conf
-rw-------. 1 postgres postgres 21758 Jan 22 10:27 postgresql.conf

If postgresql.conf is not owned by the database owner and does not have read and write permissions for the
owner, this is a finding.

Fix Text: Enable logging.

All denials are logged by default if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-001814

Group ID (Vulid): V-261926
Group Title: SRG-APP-000383-DB-000364
Rule ID: SV-261926r1000783_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008000
Rule Title: PostgreSQL must disable network functions, ports, protocols, and services deemed by the
organization to be nonsecure, in accordance with the Ports, Protocols, and Services Management (PPSM)
guidance.

Vulnerability Discussion: Use of nonsecure network functions, ports, protocols, and services exposes the system
to avoidable threats.

Check Content:
As the database administrator, run the following SQL:

$ psql -c "SHOW port"

If the currently defined port configuration is deemed prohibited, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To change the listening port of the database, as the database administrator, change the following setting in
postgresql.conf:

$ sudo su - postgres
$ vi $PGDATA/postgresql.conf

Change the port parameter to the desired port.

Restart the database:

$ sudo systemctl restart postgresql-${PGVER?}

Note: psql uses the port 5432 by default. This can be changed by specifying the port with psql or by setting the
PGPORT environment variable:

$ psql -p 5432 -c "SHOW port"
$ export PGPORT=5432

CCI: CCI-001762

Group ID (Vulid): V-261927
Group Title: SRG-APP-000389-DB-000372
Rule ID: SV-261927r1000786_rule

Severity: CAT II
Rule Version (STIG-ID): CD16-00-008100
Rule Title: PostgreSQL must require users to reauthenticate when organization-defined circumstances or
situations require reauthentication.

Vulnerability Discussion: The DOD standard for authentication of an interactive user is the presentation of a
Common Access Card (CAC) or other physical token bearing a valid, current, DOD-issued Public Key
Infrastructure (PKI) certificate, coupled with a Personal Identification Number (PIN) to be entered by the user at
the beginning of each session and whenever reauthentication is required.

Without reauthentication, users may access resources or perform tasks for which they do not have authorization.

When applications provide the capability to change security roles or escalate the functional capability of the
application, it is critical the user reauthenticate.

In addition to the reauthentication requirements associated with session locks, organizations may require
reauthentication of individuals and/or devices in other situations, including (but not limited to) the following
circumstances:

(i) When authenticators change;
(ii) When roles change;
(iii) When security categories of information systems change;
(iv) When the execution of privileged functions occurs;
(v) After a fixed period of time; or
(vi) Periodically.

Within the DOD, the minimum circumstances requiring reauthentication are privilege escalation and role
changes.

Check Content:
Determine all situations where a user must reauthenticate. Check if the mechanisms that handle such situations
use the following SQL:

To make a single user reauthenticate, the following must be present:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE user='<username>'

To make all users reauthenticate, run the following:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE user LIKE '%'

If the provided SQL does not force reauthentication, this is a finding.

Fix Text: Modify and/or configure PostgreSQL and related applications and tools so that users are always
required to reauthenticate when changing role or escalating privileges.

To make a single user reauthenticate, the following must be present:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE user='<username>'

To make all users reauthenticate, the following must be present:

SELECT pg_terminate_backend(pid) FROM pg_stat_activity WHERE user LIKE '%'

CCI: CCI-002038

Group ID (Vulid): V-261928
Group Title: SRG-APP-000416-DB-000380
Rule ID: SV-261928r1000789_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-008300
Rule Title: PostgreSQL must use NSA-approved cryptography to protect classified information in accordance
with the data owner's requirements.

Vulnerability Discussion: Use of weak or untested encryption algorithms undermines the purposes of using
encryption to protect data. The application must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested and validated.

It is the responsibility of the data owner to assess the cryptography requirements in light of applicable federal
laws, Executive Orders, directives, policies, regulations, and standards.

NSA-approved cryptography for classified networks is hardware based. This requirement addresses the
compatibility of PostgreSQL with the encryption devices.

Check Content:
If PostgreSQL is deployed in an unclassified environment, this is not applicable.

If PostgreSQL is not using NSA-approved cryptography to protect classified information in accordance with
applicable federal laws, Executive Orders, directives, policies, regulations, and standards, this is a finding.

To check if PostgreSQL is configured to use SSL, as the database administrator (shown here as "postgres"), run
the following SQL:

$ sudo su - postgres
$ psql -c "SHOW ssl"

If SSL is off, this is a finding.

Consult network administration staff to determine whether the server is protected by NSA-approved encrypting
devices. If not, this a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To configure PostgreSQL to use SSL as a database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameter:

ssl = on

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

Deploy NSA-approved encrypting devices to protect the server on the network.

CCI: CCI-002450

Group ID (Vulid): V-261929
Group Title: SRG-APP-000427-DB-000385
Rule ID: SV-261929r1000792_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008400
Rule Title: PostgreSQL must only accept end entity certificates issued by DOD PKI or DOD-approved PKI
Certification Authorities (CAs) for the establishment of all encrypted sessions.

Vulnerability Discussion: Only DOD-approved external PKIs have been evaluated to ensure that they have
security controls and identity vetting procedures in place which are sufficient for DOD systems to rely on the
identity asserted in the certificate. PKIs lacking sufficient security controls and identity vetting procedures risk
being compromised and issuing certificates that enable adversaries to impersonate legitimate users.

The authoritative list of DOD-approved PKIs is published at https://public.cyber.mil/pki-pke/interoperability/.

This requirement focuses on communications protection for the PostgreSQL session rather than for the network
packet.

Check Content:
As the database administrator (shown here as "postgres"), verify the following setting in postgresql.conf:

$ sudo su - postgres
$ psql -c "SHOW ssl_ca_file"
$ psql -c "SHOW ssl_cert_file"

If the database is not configured to use only DOD-approved certificates, this is a finding.

Fix Text: Revoke trust in any certificates not issued by a DOD-approved certificate authority.

Configure PostgreSQL to accept only DOD and DOD-approved PKI end-entity certificates.

To configure PostgreSQL to accept approved CAs, refer to the official PostgreSQL documentation:
http://www.postgresql.org/docs/current/static/ssl-tcp.html

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-002470

Group ID (Vulid): V-261930
Group Title: SRG-APP-000428-DB-000386

Rule ID: SV-261930r1000795_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008500
Rule Title: PostgreSQL must implement cryptographic mechanisms to prevent unauthorized modification of
organization-defined information at rest (to include, at a minimum, PII and classified information) on
organization-defined information system components.

Vulnerability Discussion: PostgreSQLs handling data requiring "data at rest" protections must employ
cryptographic mechanisms to prevent unauthorized disclosure and modification of the information at rest. These
cryptographic mechanisms may be native to PostgreSQL or implemented via additional software or operating
system/file system settings, as appropriate to the situation.

Selection of a cryptographic mechanism is based on the need to protect the integrity of organizational
information. The strength of the mechanism is commensurate with the security category and/or classification of
the information. Organizations have the flexibility to either encrypt all information on storage devices (i.e., full
disk encryption) or encrypt specific data structures (e.g., files, records, or fields).

The decision whether and what to encrypt rests with the data owner and is also influenced by the physical
measures taken to secure the equipment and media on which the information resides.

Check Content:
Review the system documentation to determine whether the organization has defined the information at rest that
is to be protected from modification, which must include, at a minimum, PII and classified information.

If no information is identified as requiring such protection, this is not a finding.

Review the configuration of PostgreSQL, operating system/file system, and additional software as relevant.

If any of the information defined as requiring cryptographic protection from modification is not encrypted in a
manner that provides the required level of protection, this is a finding.

One possible way to encrypt data within PostgreSQL is to use pgcrypto extension.

To check if pgcrypto is installed on PostgreSQL, as a database administrator (shown here as "postgres"), run the
following command:

$ sudo su - postgres
$ psql -c "SELECT * FROM pg_available_extensions where name='pgcrypto'"

If data in the database requires encryption and pgcrypto is not available, this is a finding.

If disk or filesystem requires encryption, ask the system owner, database administrator (DBA), and system
administrator (SA) to demonstrate filesystem or disk level encryption.

If this is required and is not found, this is a finding.

Fix Text: Configure PostgreSQL, operating system/file system, and additional software as relevant, to provide
the required level of cryptographic protection.

The pgcrypto module provides cryptographic functions for PostgreSQL. Refer to supplementary content
APPENDIX-E for documentation on installing pgcrypto.

With pgcrypto installed, it is possible to insert encrypted data into the database:

INSERT INTO accounts(username, password) VALUES ('bob', crypt('mypass', gen_salt('bf', 4));

CCI: CCI-002475

Group ID (Vulid): V-261931
Group Title: SRG-APP-000429-DB-000387
Rule ID: SV-261931r1000798_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008600
Rule Title: PostgreSQL must implement cryptographic mechanisms preventing the unauthorized disclosure of
organization-defined information at rest on organization-defined information system components.

Vulnerability Discussion: PostgreSQLs handling data requiring "data at rest" protections must employ
cryptographic mechanisms to prevent unauthorized disclosure and modification of the information at rest. These
cryptographic mechanisms may be native to PostgreSQL or implemented via additional software or operating
system/file system settings, as appropriate to the situation.

Selection of a cryptographic mechanism is based on the need to protect the integrity of organizational
information. The strength of the mechanism is commensurate with the security category and/or classification of
the information. Organizations have the flexibility to either encrypt all information on storage devices (i.e., full
disk encryption) or encrypt specific data structures (e.g., files, records, or fields).

The decision whether and what to encrypt rests with the data owner and is also influenced by the physical
measures taken to secure the equipment and media on which the information resides.

Check Content:
To check if pgcrypto is installed on PostgreSQL, as a database administrator (shown here as "postgres"), run the
following command:

$ sudo su - postgres
$ psql -c "SELECT * FROM pg_available_extensions where name='pgcrypto'"

If data in the database requires encryption and pgcrypto is not available, this is a finding.

If a disk or filesystem requires encryption, ask the system owner, database administrator (DBA), and system
administrator (SA) to demonstrate the use of filesystem and/or disk-level encryption. If this is required and is not
found, this is a finding.

Fix Text: Configure PostgreSQL, operating system/file system, and additional software as relevant, to provide
the required level of cryptographic protection for information requiring cryptographic protection against
disclosure.

Secure the premises, equipment, and media to provide the required level of physical protection.

The pgcrypto module provides cryptographic functions for PostgreSQL. Refer to supplementary content
APPENDIX-E for documentation on installing pgcrypto.

With pgcrypto installed, it is possible to insert encrypted data into the database:

INSERT INTO accounts(username, password) VALUES ('bob', crypt('mypass', gen_salt('bf', 4));

CCI: CCI-002476

Group ID (Vulid): V-261932
Group Title: SRG-APP-000441-DB-000378
Rule ID: SV-261932r1000801_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008800
Rule Title: PostgreSQL must maintain the confidentiality and integrity of information during preparation for
transmission.

Vulnerability Discussion: Information can be either unintentionally or maliciously disclosed or modified during
preparation for transmission, including, for example, during aggregation, at protocol transformation points, and
during packing/unpacking. These unauthorized disclosures or modifications compromise the confidentiality or
integrity of the information.

Use of this requirement will be limited to situations where the data owner has a strict requirement for ensuring
data integrity and confidentiality is maintained at every step of the data transfer and handling process.

When transmitting data, PostgreSQL, associated applications, and infrastructure must leverage transmission
protection mechanisms.

Check Content:
If the data owner does not have a strict requirement for ensuring data integrity and confidentiality is maintained
at every step of the data transfer and handling process, this is not a finding.

As the database administrator (shown here as "postgres"), verify SSL is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW ssl"

If SSL is not enabled, this is a finding.

If PostgreSQL does not employ protective measures against unauthorized disclosure and modification during
preparation for transmission, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Implement protective measures against unauthorized disclosure and modification during preparation for
transmission.

To configure PostgreSQL to use SSL, as a database administrator (shown here as "postgres"), edit
postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameter:

ssl = on

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-002420

Group ID (Vulid): V-261933
Group Title: SRG-APP-000442-DB-000379
Rule ID: SV-261933r1000804_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-008900
Rule Title: PostgreSQL must maintain the confidentiality and integrity of information during reception.

Vulnerability Discussion: Information can be either unintentionally or maliciously disclosed or modified during
reception, including, for example, during aggregation, at protocol transformation points, and during
packing/unpacking. These unauthorized disclosures or modifications compromise the confidentiality or integrity
of the information.

This requirement applies only to those applications that are either distributed or can allow access to data
nonlocally. Use of this requirement will be limited to situations where the data owner has a strict requirement for
ensuring data integrity and confidentiality is maintained at every step of the data transfer and handling process.

When receiving data, PostgreSQL, associated applications, and infrastructure must leverage protection
mechanisms.

Check Content:
If the data owner does not have a strict requirement for ensuring data integrity and confidentiality is maintained
at every step of the data transfer and handling process, this is not a finding.

As the database administrator (shown here as "postgres"), verify SSL is enabled in postgresql.conf by running the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW ssl"

If SSL is off, this is a finding.

If PostgreSQL, associated applications, and infrastructure do not employ protective measures against
unauthorized disclosure and modification during reception, this is a finding.

Fix Text: Implement protective measures against unauthorized disclosure and modification during reception.

To configure PostgreSQL to use SSL, refer to supplementary content APPENDIX-G for instructions on enabling
SSL.

CCI: CCI-002422

Group ID (Vulid): V-261934
Group Title: SRG-APP-000447-DB-000393
Rule ID: SV-261934r1000807_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009000
Rule Title: When invalid inputs are received, PostgreSQL must behave in a predictable and documented manner
that reflects organizational and system objectives.

Vulnerability Discussion: A common vulnerability is unplanned behavior when invalid inputs are received. This
requirement guards against adverse or unintended system behavior caused by invalid inputs, where information
system responses to the invalid input may be disruptive or cause the system to fail into an unsafe state.

The behavior will be derived from the organizational and system requirements and includes, but is not limited to,
notification of the appropriate personnel, creating an audit record, and rejecting invalid input.

This calls for inspection of application source code, which will require collaboration with the application
developers. It is recognized that in many cases, the database administrator (DBA) is organizationally separate
from the application developers, and may have limited, if any, access to source code. Nevertheless, protections of
this type are so important to the secure operation of databases that they must not be ignored. At a minimum, the
DBA must attempt to obtain assurances from the development organization that this issue has been addressed,
and must document what has been discovered.

Check Content:
Review system documentation to determine how input errors from application to PostgreSQL are to be handled
in general and if any special handling is defined for specific circumstances.

If it does not implement the documented behavior, this is a finding.

As the database administrator (shown here as "postgres"), make a small SQL syntax error in psql by running the
following:

$ sudo su - postgres
$ psql -c "CREAT TABLE incorrect_syntax(id INT)"
ERROR: syntax error at or near "CREAT"

Note: The following instructions use the PGVER and PGLOG environment variables. Refer to supplementary
content APPENDIX-H for instructions on configuring PGVER and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), verify the syntax error was logged (change the log file
name and part to suit the circumstances):

$ sudo su - postgres
$ cat ~/${PGVER?}/data/${PGLOG?}/<latest log>
2024-03-30 16:18:10.772 EDT postgres postgres 5706bb87.90dERROR: syntax error at or near "CREAT" at
character 1
2024-03-30 16:18:10.772 EDT postgres postgres 5706bb87.90dSTATEMENT: CREAT TABLE
incorrect_syntax(id INT);

If no matching log entry containing the 'ERROR: syntax error' is present, this is a finding.

Fix Text: Enable logging.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

All errors and denials are logged if logging is enabled.

CCI: CCI-002754

Group ID (Vulid): V-261935
Group Title: SRG-APP-000454-DB-000389
Rule ID: SV-261935r1000810_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009100
Rule Title: When updates are applied to the PostgreSQL software, any software components that have been
replaced or made unnecessary must be removed.

Vulnerability Discussion: Previous versions of PostgreSQL components that are not removed from the
information system after updates have been installed may be exploited by adversaries.

Some DBMSs' installation tools may remove older versions of software automatically from the information
system. In other cases, manual review and removal will be required. In planning installations and upgrades,
organizations must include steps (automated, manual, or both) to identify and remove the outdated modules.

A transition period may be necessary when both the old and the new software are required. This should be taken
into account in the planning.

Check Content:
To check software installed by packages, as the system administrator, run the following command:

$ sudo rpm -qa | grep postgres

If multiple versions of postgres are installed but are unused, this is a finding.

Fix Text: Use package managers (RPM or apt-get) for installing PostgreSQL. Unused software is removed when
updated.

CCI: CCI-002617

Group ID (Vulid): V-261936
Group Title: SRG-APP-000456-DB-000390
Rule ID: SV-261936r1000963_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009200
Rule Title: Security-relevant software updates to PostgreSQL must be installed within the time period directed
by an authoritative source (e.g., IAVM, CTOs, DTMs, and STIGs).

Vulnerability Discussion: Security flaws with software applications, including database management systems,
are discovered daily. Vendors are constantly updating and patching their products to address newly discovered
security vulnerabilities. Organizations (including any contractor to the organization) are required to promptly
install security-relevant software updates (e.g., patches, service packs, and hot fixes). Flaws discovered during

security assessments, continuous monitoring, incident response activities, or information system error handling
must also be addressed expeditiously.

Organization-defined time periods for updating security-relevant software may vary based on a variety of factors
including, for example, the security category of the information system or the criticality of the update (i.e.,
severity of the vulnerability related to the discovered flaw).

This requirement will apply to software patch management solutions that are used to install patches across the
enclave and also to applications themselves that are not part of that patch management solution. For example,
many browsers today provide the capability to install their own patch software. Patch criticality, as well as
system criticality, will vary. Therefore, the tactical situations regarding the patch management process will also
vary. This means that the time period used must be a configurable parameter. Time frames for application of
security-relevant software updates may be dependent upon the Information Assurance Vulnerability Management
(IAVM) process.

The application will be configured to check for and install security-relevant software updates within an identified
time period from the availability of the update. The specific time period will be defined by an authoritative source
(e.g., IAVM, CTOs, DTMs, and STIGs).

Check Content:
If new packages are available for PostgreSQL, they can be reviewed in the package manager appropriate for the
server operating system:

To list the version of installed PostgreSQL using psql:

$ sudo su - postgres
$ psql --version

To list the current version of software for RPM:

$ rpm -qa | grep postgres

To list the current version of software for APT:

$ apt-cache policy postgres

All versions of PostgreSQL are listed here: http://www.postgresql.org/support/versioning/.

All security-relevant software updates for PostgreSQL are listed here:
http://www.postgresql.org/support/security/.

If PostgreSQL is not at the latest version, this is a finding.

If PostgreSQL is not at the latest version and the evaluated version has CVEs (IAVAs), then this is a CAT I
finding.

Fix Text: Institute and adhere to policies and procedures to ensure that patches are consistently applied to
PostgreSQL within the time allowed.

CCI: CCI-002605

Group ID (Vulid): V-261937
Group Title: SRG-APP-000456-DB-000400
Rule ID: SV-261937r1000974_rule
Severity: CAT I
Rule Version (STIG-ID): CD16-00-009300
Rule Title: PostgreSQL products must be a version supported by the vendor.

Vulnerability Discussion: Unsupported commercial and database systems should not be used because fixes to
newly identified bugs will not be implemented by the vendor. The lack of support can result in potential
vulnerabilities. Systems at unsupported servicing levels or releases will not receive security updates for new
vulnerabilities, which leaves them subject to exploitation.

When maintenance updates and patches are no longer available, the database software is no longer considered
supported and should be upgraded or decommissioned.

Check Content:
If new packages are available for PostgreSQL, they can be reviewed in the package manager appropriate for the
server operating system:

To list the version of installed PostgreSQL using psql:

$ sudo su - postgres
$ psql --version

To list the current version of software for RPM:

$ rpm -qa | grep postgres

To list the current version of software for APT:

$ apt-cache policy postgres

All versions of PostgreSQL are listed here: http://www.postgresql.org/support/versioning/

All security-relevant software updates for PostgreSQL are listed here:
http://www.postgresql.org/support/security/

If PostgreSQL is not at the latest version, this is a finding.

If PostgreSQL is not at the latest version and the evaluated version has CVEs (IAVAs), this is a CAT I finding.

Fix Text: Institute and adhere to policies and procedures to ensure that patches are consistently applied to
PostgreSQL within the time allowed.

CCI: CCI-003376

Group ID (Vulid): V-261938
Group Title: SRG-APP-000492-DB-000332
Rule ID: SV-261938r1000819_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009400

Rule Title: PostgreSQL must be able to generate audit records when security objects are accessed.

Vulnerability Discussion: Changes to the security configuration must be tracked.

This requirement applies to situations where security data is retrieved or modified via data manipulation
operations, as opposed to via specialized security functionality.

In an SQL environment, types of access include, but are not necessarily limited to:
SELECT
INSERT
UPDATE
DELETE
EXECUTE

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit.. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261939
Group Title: SRG-APP-000492-DB-000333

Rule ID: SV-261939r1000822_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009500
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to access security objects occur.

Vulnerability Discussion: Changes to the security configuration must be tracked.

This requirement applies to situations where security data is retrieved or modified via data manipulation
operations, as opposed to via specialized security functionality.

In an SQL environment, types of access include, but are not limited to:
SELECT
INSERT
UPDATE
DELETE
EXECUTE

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), setup a test schema and revoke users privileges from
using it by running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE SCHEMA stig_test_schema AUTHORIZATION postgres"
$ psql -c "REVOKE ALL ON SCHEMA stig_test_schema FROM public"
$ psql -c "GRANT ALL ON SCHEMA stig_test_schema TO postgres"

Create a test table and insert a value into that table for the following checks by running the following SQL:

$ psql -c "CREATE TABLE stig_test_schema.stig_test_table(id INT)"
$ psql -c "INSERT INTO stig_test_schema.stig_test_table(id) VALUES (0)"

CREATE
Attempt to CREATE a table in the stig_test_schema schema with a role that does not have privileges by running
the following SQL:

psql -c "CREATE ROLE bob; SET ROLE bob; CREATE TABLE stig_test_schema.test_table(id INT);"
ERROR: permission denied for schema stig_test_schema

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 09:55:19.423 UTC postgres 56e0393f.186b postgres: >ERROR: permission denied for schema
stig_test_schema at character 14
< 2024-03-09 09:55:19.423 UTC postgres 56e0393f.186b postgres: >STATEMENT: CREATE TABLE
stig_test_schema.test_table(id INT);

If the denial is not logged, this is a finding.

INSERT
As role bob, attempt to INSERT into the table created earlier, stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; INSERT INTO stig_test_schema.stig_test_table(id) VALUES (0);"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 09:58:30.709 UTC postgres 56e0393f.186b postgres: >ERROR: permission denied for schema
stig_test_schema at character 13
< 2024-03-09 09:58:30.709 UTC postgres 56e0393f.186b postgres: >STATEMENT: INSERT INTO
stig_test_schema.stig_test_table(id) VALUES (0);

If the denial is not logged, this is a finding.

SELECT
As role bob, attempt to SELECT from the table created earlier, stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; SELECT * FROM stig_test_schema.stig_test_table;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 09:57:58.327 UTC postgres 56e0393f.186b postgres: >ERROR: permission denied for schema
stig_test_schema at character 15
< 2024-03-09 09:57:58.327 UTC postgres 56e0393f.186b postgres: >STATEMENT: SELECT * FROM
stig_test_schema.stig_test_table;

If the denial is not logged, this is a finding.

ALTER
As role bob, attempt to ALTER the table created earlier, stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; ALTER TABLE stig_test_schema.stig_test_table ADD COLUMN name TEXT;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 10:03:43.765 UTC postgres 56e0393f.186b postgres: >STATEMENT: ALTER TABLE
stig_test_schema.stig_test_table ADD COLUMN name TEXT;

If the denial is not logged, this is a finding.

UPDATE
As role bob, attempt to UPDATE a row created earlier, stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; UPDATE stig_test_schema.stig_test_table SET id=1 WHERE id=0;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 10:08:27.696 UTC postgres 56e0393f.186b postgres: >ERROR: permission denied for schema
stig_test_schema at character 8
< 2024-03-09 10:08:27.696 UTC postgres 56e0393f.186b postgres: >STATEMENT: UPDATE
stig_test_schema.stig_test_table SET id=1 WHERE id=0;

If the denial is not logged, this is a finding.

DELETE
As role bob, attempt to DELETE a row created earlier, stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; DELETE FROM stig_test_schema.stig_test_table WHERE id=0;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 10:09:29.607 UTC postgres 56e0393f.186b postgres: >ERROR: permission denied for schema
stig_test_schema at character 13
< 2024-03-09 10:09:29.607 UTC postgres 56e0393f.186b postgres: >STATEMENT: DELETE FROM
stig_test_schema.stig_test_table WHERE id=0;

If the denial is not logged, this is a finding.

PREPARE
As role bob, attempt to execute a prepared system using PREPARE by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; PREPARE stig_test_plan(int) AS SELECT id FROM stig_test_schema.stig_test_table
WHERE id=$1;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 10:16:22.628 UTC postgres 56e03e02.18e4 postgres: >ERROR: permission denied for schema
stig_test_schema at character 46
< 2024-03-09 10:16:22.628 UTC postgres 56e03e02.18e4 postgres: >STATEMENT: PREPARE
stig_test_plan(int) AS SELECT id FROM stig_test_schema.stig_test_table WHERE id=$1;

If the denial is not logged, this is a finding.

DROP
As role bob, attempt to DROP the table created earlier stig_test_table by running the following SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; DROP TABLE stig_test_schema.stig_test_table;"

As a database administrator (shown here as "postgres"), verify that the denial was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-09 10:18:55.255 UTC postgres 56e03e02.18e4 postgres: >ERROR: permission denied for schema
stig_test_schema
< 2024-03-09 10:18:55.255 UTC postgres 56e03e02.18e4 postgres: >STATEMENT: DROP TABLE
stig_test_schema.stig_test_table;

If the denial is not logged, this is a finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to access security objects
occur.

All denials are logged if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-000172

Group ID (Vulid): V-261940
Group Title: SRG-APP-000494-DB-000344
Rule ID: SV-261940r1000825_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009600
Rule Title: PostgreSQL must generate audit records when categories of information (e.g., classification
levels/security levels) are accessed.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -c "SHOW pgaudit.log"

If pgaudit.log does not contain, "ddl, write, role", this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

The DBMS (PostgreSQL) can be configured to audit these requests using pgaudit. Refer to supplementary
content APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres

$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log = 'ddl, write, role'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql- ${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261941
Group Title: SRG-APP-000494-DB-000345
Rule ID: SV-261941r1000828_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009700
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to access categories of
information (e.g., classification levels/security levels) occur.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
As the database administrator (shown here as "postgres"), run the following SQL:

$ sudo su - postgres
$ psql -c "SHOW pgaudit.log"

If pgaudit.log does not contain, "ddl, write, role", this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure PostgreSQL to produce audit records when unsuccessful attempts to access categories of information
occur.

All denials are logged if logging is enabled. To ensure logging is enabled, see the instructions in the

supplementary content APPENDIX-C.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log = 'ddl, write, role'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261942
Group Title: SRG-APP-000495-DB-000326
Rule ID: SV-261942r1000831_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009800
Rule Title: PostgreSQL must generate audit records when privileges/permissions are added.

Vulnerability Discussion: Changes in the permissions, privileges, and roles granted to users and roles must be
tracked. Without an audit trail, unauthorized elevation or restriction of privileges could go undetected. Elevated
privileges give users access to information and functionality that they should not have; restricted privileges
wrongly deny access to authorized users.

In an SQL environment, adding permissions is typically done via the GRANT command, or, in the negative, the
DENY command.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a role by running the following SQL:

Change the privileges of another user:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob"

GRANT then REVOKE privileges from the role:

$ psql -c "GRANT CONNECT ON DATABASE postgres TO bob"
$ psql -c "REVOKE CONNECT ON DATABASE postgres FROM bob"

postgres=# REVOKE CONNECT ON DATABASE postgres FROM bob;
REVOKE

postgres=# GRANT CONNECT ON DATABASE postgres TO bob;
GRANT

As the database administrator (shown here as "postgres"), verify the events were logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-07-13 16:25:21.103 EDT postgres postgres LOG: > AUDIT: SESSION,1,1,ROLE,GRANT,,,GRANT
CONNECT ON DATABASE postgres TO bob,<none>
< 2024-07-13 16:25:25.520 EDT postgres postgres LOG: > AUDIT: SESSION,1,1,ROLE,REVOKE,,,REVOKE
CONNECT ON DATABASE postgres FROM bob,<none>

If the above steps cannot verify that audit records are produced when privileges/permissions/role memberships
are added, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit,. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log = 'role'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261943
Group Title: SRG-APP-000495-DB-000327
Rule ID: SV-261943r1000834_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-009900
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to add privileges/permissions
occur.

Vulnerability Discussion: Failed attempts to change the permissions, privileges, and roles granted to users and
roles must be tracked. Without an audit trail, unauthorized attempts to elevate or restrict privileges could go
undetected.

In an SQL environment, adding permissions is typically done via the GRANT command, or, in the negative, the
DENY command.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a role "bob" and a test table by running the
following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob; CREATE TABLE test(id INT);"

Set current role to "bob" and attempt to modify privileges:

$ psql -c "SET ROLE bob; GRANT ALL PRIVILEGES ON test TO bob;"

As the database administrator (shown here as "postgres"), verify the unsuccessful attempt was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
2024-07-14 18:12:23.208 EDT postgres postgres ERROR: permission denied for relation test
2024-07-14 18:12:23.208 EDT postgres postgres STATEMENT: GRANT ALL PRIVILEGES ON test TO bob;

If audit logs are not generated when unsuccessful attempts to add privileges/permissions occur, this is a finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to add privileges occur.

All denials are logged by default if logging is enabled. To ensure logging is enabled, review supplementary
content APPENDIX-C for instructions on enabling logging.

CCI: CCI-000172

Group ID (Vulid): V-261944
Group Title: SRG-APP-000495-DB-000328
Rule ID: SV-261944r1000837_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010000
Rule Title: PostgreSQL must generate audit records when privileges/permissions are modified.

Vulnerability Discussion: Changes in the permissions, privileges, and roles granted to users and roles must be
tracked. Without an audit trail, unauthorized elevation or restriction of privileges could go undetected. Elevated
privileges give users access to information and functionality that they should not have; restricted privileges
wrongly deny access to authorized users.

In an SQL environment, modifying permissions is typically done via the GRANT, REVOKE, and DENY
commands.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role is enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='role'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261945
Group Title: SRG-APP-000495-DB-000329
Rule ID: SV-261945r1000840_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010100
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to modify
privileges/permissions occur.

Vulnerability Discussion: Failed attempts to change the permissions, privileges, and roles granted to users and
roles must be tracked. Without an audit trail, unauthorized attempts to elevate or restrict privileges could go
undetected.

In an SQL environment, modifying permissions is typically done via the GRANT, REVOKE, and DENY
commands.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:

Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a role "bob" and a test table by running the
following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob; CREATE TABLE test(id INT)"

Set current role to "bob" and attempt to modify privileges:

$ psql -c "SET ROLE bob; GRANT ALL PRIVILEGES ON test TO bob;"
$ psql -c "SET ROLE bob; REVOKE ALL PRIVILEGES ON test FROM bob;"

As the database administrator (shown here as "postgres"), verify the unsuccessful attempt was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
2024-07-14 18:12:23.208 EDT postgres postgres ERROR: permission denied for relation test
2024-07-14 18:12:23.208 EDT postgres postgres STATEMENT: GRANT ALL PRIVILEGES ON test TO bob;
2024-07-14 18:14:52.895 EDT postgres postgres ERROR: permission denied for relation test
2024-07-14 18:14:52.895 EDT postgres postgres STATEMENT: REVOKE ALL PRIVILEGES ON test FROM
bob;

If audit logs are not generated when unsuccessful attempts to modify privileges/permissions occur, this is a
finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to modify privileges
occur.

All denials are logged by default if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-000172

Group ID (Vulid): V-261946
Group Title: SRG-APP-000496-DB-000334
Rule ID: SV-261946r1000843_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010200
Rule Title: PostgreSQL must generate audit records when security objects are modified.

Vulnerability Discussion: Changes in the database objects (tables, views, procedures, functions) that record and
control permissions, privileges, and roles granted to users and roles must be tracked. Without an audit trail,
unauthorized changes to the security subsystem could go undetected. The database could be severely
compromised or rendered inoperative.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres

$ psql -c "SHOW shared_preload_libraries"

If the results does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Verify that accessing the catalog is audited by running the following SQL:

$ psql -c "SHOW pgaudit.log_catalog"

If log_catalog is not on, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log_catalog = 'on'
pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261947
Group Title: SRG-APP-000496-DB-000335
Rule ID: SV-261947r1000846_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010300
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to modify security objects
occur.

Vulnerability Discussion: Changes in the database objects (tables, views, procedures, functions) that record and
control permissions, privileges, and roles granted to users and roles must be tracked. Without an audit trail,
unauthorized changes to the security subsystem could go undetected. The database could be severely

compromised or rendered inoperative.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a test role by running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob"

To test if audit records are generated from unsuccessful attempts at modifying security objects, run the following
SQL:

$ sudo su - postgres
$ psql -c "SET ROLE bob; UPDATE pg_authid SET rolsuper = 't' WHERE rolname = 'bob';"

As the database administrator (shown here as "postgres"), verify the denials were logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-17 10:34:00.017 EDT bob 56eabf52.b62 postgres: >ERROR: permission denied for relation pg_authid
< 2024-03-17 10:34:00.017 EDT bob 56eabf52.b62 postgres: >STATEMENT: UPDATE pg_authid SET rolsuper
= 't' WHERE rolname = 'bob';

If denials are not logged, this is a finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to modify security objects
occur.

Unsuccessful attempts to modify security objects can be logged if logging is enabled. To ensure logging is
enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

CCI: CCI-000172

Group ID (Vulid): V-261948
Group Title: SRG-APP-000498-DB-000346
Rule ID: SV-261948r1000849_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010400
Rule Title: PostgreSQL must generate audit records when categories of information (e.g., classification
levels/security levels) are modified.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
If category tracking is not required in the database, this is not applicable.

As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261949
Group Title: SRG-APP-000498-DB-000347
Rule ID: SV-261949r1000852_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010500
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to modify categories of
information (e.g., classification levels/security levels) occur.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain "pgaudit", this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure PostgreSQL to produce audit records when unsuccessful attempts to modify categories of information
occur.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C. All denials are
logged when logging is enabled.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261950
Group Title: SRG-APP-000499-DB-000330
Rule ID: SV-261950r1000855_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010600
Rule Title: PostgreSQL must generate audit records when privileges/permissions are deleted.

Vulnerability Discussion: Changes in the permissions, privileges, and roles granted to users and roles must be
tracked. Without an audit trail, unauthorized elevation or restriction of privileges could go undetected. Elevated
privileges give users access to information and functionality that they should not have; restricted privileges
wrongly deny access to authorized users.

In an SQL environment, deleting permissions is typically done via the REVOKE or DENY command.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log = 'role'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261951
Group Title: SRG-APP-000499-DB-000331
Rule ID: SV-261951r1000858_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010700
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to delete privileges/permissions
occur.

Vulnerability Discussion: Failed attempts to change the permissions, privileges, and roles granted to users and

roles must be tracked. Without an audit trail, unauthorized attempts to elevate or restrict privileges could go
undetected.

In an SQL environment, deleting permissions is typically done via the REVOKE or DENY command.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create the roles "joe" and "bob" with LOGIN by
running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE joe LOGIN"
$ psql -c "CREATE ROLE bob LOGIN"

Set current role to "bob" and attempt to alter the role "joe":

$ psql -c "SET ROLE bob; ALTER ROLE joe NOLOGIN;"

As the database administrator (shown here as "postgres"), verify the denials are logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-03-17 11:28:10.004 UTC bob 56eacd05.cda postgres: >ERROR: permission denied to alter role
< 2024-03-17 11:28:10.004 UTC bob 56eacd05.cda postgres: >STATEMENT: ALTER ROLE joe;

If audit logs are not generated when unsuccessful attempts to delete privileges/permissions occur, this is a
finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to delete privileges occur.

All denials are logged if logging is enabled. To ensure logging is enabled, review supplementary content
APPENDIX-C for instructions on enabling logging.

CCI: CCI-000172

Group ID (Vulid): V-261952
Group Title: SRG-APP-000501-DB-000336
Rule ID: SV-261952r1000861_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-010800
Rule Title: PostgreSQL must generate audit records when security objects are deleted.

Vulnerability Discussion: The removal of security objects from the database/PostgreSQL would seriously
degrade a system's information assurance posture. If such an event occurs, it must be logged.

Check Content:

Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a test table stig_test, enable row level security,
and create a policy by running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE TABLE stig_test(id INT)"
$ psql -c "ALTER TABLE stig_test ENABLE ROW LEVEL SECURITY"
$ psql -c "CREATE POLICY lock_table ON stig_test USING ('postgres' = current_user)"

Drop the policy and disable row level security:

$ psql -c "DROP POLICY lock_table ON stig_test"
$ psql -c "ALTER TABLE stig_test DISABLE ROW LEVEL SECURITY"

As the database administrator (shown here as "postgres"), verify the security objects deletions were logged:

$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
2024-03-30 14:54:18.991 UTC postgres postgres LOG: AUDIT: SESSION,11,1,DDL,DROP POLICY,,,DROP
POLICY lock_table ON stig_test;,<none>
2024-03-30 14:54:42.373 UTC postgres postgres LOG: AUDIT: SESSION,12,1,DDL,ALTER TABLE,,,ALTER
TABLE stig_test DISABLE ROW LEVEL SECURITY;,<none>

If audit records are not produced when security objects are dropped, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log = 'ddl'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261953
Group Title: SRG-APP-000501-DB-000337
Rule ID: SV-261953r1000864_rule
Severity: CAT II

Rule Version (STIG-ID): CD16-00-010900
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to delete security objects occur.

Vulnerability Discussion: The removal of security objects from the database/PostgreSQL would seriously
degrade a system's information assurance posture. If such an action is attempted, it must be logged.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure PostgreSQL to produce audit records when unsuccessful attempts to delete security objects occur.

All errors and denials are logged if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261954
Group Title: SRG-APP-000502-DB-000348
Rule ID: SV-261954r1000867_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011000
Rule Title: PostgreSQL must generate audit records when categories of information (e.g., classification

levels/security levels) are deleted.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain "pgaudit", this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261955
Group Title: SRG-APP-000502-DB-000349
Rule ID: SV-261955r1000870_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011100

Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to delete categories of
information (e.g., classification levels/security levels) occur.

Vulnerability Discussion: Changes in categories of information must be tracked. Without an audit trail,
unauthorized access to protected data could go undetected.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

For detailed information on categorizing information, refer to FIPS Publication 199, Standards for Security
Categorization of federal information and information systems, and FIPS Publication 200, Minimum Security
Requirements for federal information and information systems.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain "pgaudit", this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

All errors and denials are logged if logging is enabled. To ensure logging is enabled, review supplementary
content APPENDIX-C for instructions on enabling logging.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261956

Group Title: SRG-APP-000503-DB-000350
Rule ID: SV-261956r1000975_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011200
Rule Title: PostgreSQL must generate audit records when successful logons or connections occur.

Vulnerability Discussion: For completeness of forensic analysis, it is necessary to track who/what (a user or
other principal) logs on to PostgreSQL.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), check if log_connections is enabled by running the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_connections"

If log_connections is off, this is a finding.

Verify the logs that the previous connection to the database was logged:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-02-16 15:54:03.934 UTC postgres postgres 56c64b8b.aeb: >LOG: connection authorized: user=postgres
database=postgres

If an audit record is not generated each time a user (or other principal) logs on or connects to PostgreSQL, this is
a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

If logging is enabled the following configurations must be made to log connections, date/time, username, and
session identifier.

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters as such:

log_connections = on
log_line_prefix = '< %m %u %d %c: >'

Where:
* %m is the time and date
* %u is the username

* %d is the database
* %c is the session ID for the connection

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261957
Group Title: SRG-APP-000503-DB-000351
Rule ID: SV-261957r1000876_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011300
Rule Title: PostgreSQL must generate audit records when unsuccessful logons or connection attempts occur.

Vulnerability Discussion: For completeness of forensic analysis, it is necessary to track failed attempts to log on
to PostgreSQL. While positive identification may not be possible in a case of failed authentication, as much
information as possible about the incident must be captured.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I on PGLOG.

In this example the user "joe" will log in to the Postgres database unsuccessfully:

$ psql -d postgres -U joe

As the database administrator (shown here as "postgres"), check ${PGLOG?} for a FATAL connection audit trail:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/{latest_log>
< 2024-02-16 16:18:13.027 UTC joe 56c65135.b5f postgres: >LOG: connection authorized: user=joe
database=postgres
< 2024-02-16 16:18:13.027 UTC joe 56c65135.b5f postgres: >FATAL: role "joe" does not exist

If an audit record is not generated each time a user (or other principal) attempts, but fails to log on or connect to
PostgreSQL (including attempts where the user ID is invalid/unknown), this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

If logging is enabled the following configurations must be made to log unsuccessful connections, date/time,
username, and session identifier.

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters:

log_connections = on
log_line_prefix = '< %m %u %c: >'

Where:
* %m is the time and date
* %u is the username
* %c is the session ID for the connection

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261958
Group Title: SRG-APP-000504-DB-000354
Rule ID: SV-261958r1000879_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011400
Rule Title: PostgreSQL must generate audit records for all privileged activities or other system-level access.

Vulnerability Discussion: Without tracking privileged activity, it would be difficult to establish, correlate, and
investigate the events relating to an incident or identify those responsible for one.

System documentation should include a definition of the functionality considered privileged.

A privileged function in this context is any operation that modifies the structure of the database, its built-in logic,
or its security settings. This would include all Data Definition Language (DDL) statements and all security-
related statements. In an SQL environment, it encompasses, but is not necessarily limited to:
CREATE
ALTER
DROP
GRANT
REVOKE
DENY

There may also be Data Manipulation Language (DML) statements that, subject to context, should be regarded as
privileged. Possible examples in SQL include:

TRUNCATE TABLE;
DELETE, or
DELETE affecting more than n rows, for some n, or
DELETE without a WHERE clause;

UPDATE or
UPDATE affecting more than n rows, for some n, or
UPDATE without a WHERE clause;

any SELECT, INSERT, UPDATE, or DELETE to an application-defined security table executed by other than a
security principal.

Depending on the capabilities of PostgreSQL and the design of the database and associated applications, audit
logging may be achieved by means of PostgreSQL auditing features, database triggers, other mechanisms, or a
combination of these.

Note that it is particularly important to audit and tightly control any action that weakens the implementation of
this requirement itself, since the objective is to have a complete audit trail of all administrative activity.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain pgaudit, this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed the following configurations can be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):
shared_preload_libraries = 'pgaudit'
pgaudit.log='ddl, role, read, write'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261959
Group Title: SRG-APP-000504-DB-000355
Rule ID: SV-261959r1000882_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011500
Rule Title: PostgreSQL must generate audit records when unsuccessful attempts to execute privileged activities

or other system-level access occur.

Vulnerability Discussion: Without tracking privileged activity, it would be difficult to establish, correlate, and
investigate the events relating to an incident or identify those responsible for one.

System documentation should include a definition of the functionality considered privileged.

A privileged function in this context is any operation that modifies the structure of the database, its built-in logic,
or its security settings. This would include all Data Definition Language (DDL) statements and all security-
related statements. In an SQL environment, it encompasses, but is not necessarily limited to:
CREATE
ALTER
DROP
GRANT
REVOKE
DENY

Note that it is particularly important to audit and tightly control any action that weakens the implementation of
this requirement itself, since the objective is to have a complete audit trail of all administrative activity.

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I on PGLOG.

As the database administrator (shown here as "postgres"), create the role "bob" by running the following SQL:

$ sudo su - postgres
$ psql -c "CREATE ROLE bob"

Change the current role to bob and attempt to execute privileged activity:

$ psql -c "CREATE ROLE stig_test SUPERUSER"
$ psql -c "CREATE ROLE stig_test CREATEDB"
$ psql -c "CREATE ROLE stig_test CREATEROLE"
$ psql -c "CREATE ROLE stig_test CREATEUSER"

As the database administrator (shown here as "postgres"), verify that an audit event was produced (use the latest
log):

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-02-23 20:16:32.396 UTC postgres 56cfa74f.79eb postgres: >ERROR: must be superuser to create
superusers
< 2024-02-23 20:16:32.396 UTC postgres 56cfa74f.79eb postgres: >STATEMENT: CREATE ROLE stig_test
SUPERUSER;
< 2024-02-23 20:16:48.725 UTC postgres 56cfa74f.79eb postgres: >ERROR: permission denied to create role
< 2024-02-23 20:16:48.725 UTC postgres 56cfa74f.79eb postgres: >STATEMENT: CREATE ROLE stig_test
CREATEDB;
< 2024-02-23 20:16:54.365 UTC postgres 56cfa74f.79eb postgres: >ERROR: permission denied to create role

< 2024-02-23 20:16:54.365 UTC postgres 56cfa74f.79eb postgres: >STATEMENT: CREATE ROLE stig_test
CREATEROLE;
< 2024-02-23 20:17:05.949 UTC postgres 56cfa74f.79eb postgres: >ERROR: must be superuser to create
superusers
< 2024-02-23 20:17:05.949 UTC postgres 56cfa74f.79eb postgres: >STATEMENT: CREATE ROLE stig_test
CREATEUSER;

If audit records are not produced, this is a finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to execute privileged
SQL.

All denials are logged by default if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-000172

Group ID (Vulid): V-261960
Group Title: SRG-APP-000505-DB-000352
Rule ID: SV-261960r1000885_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011600
Rule Title: PostgreSQL must generate audit records showing starting and ending time for user access to the
database(s).

Vulnerability Discussion: For completeness of forensic analysis, it is necessary to know how long a user's (or
other principal's) connection to PostgreSQL lasts. This can be achieved by recording disconnections, in addition
to logons/connections, in the audit logs.

Disconnection may be initiated by the user or forced by the system (as in a timeout) or result from a system or
network failure. To the greatest extent possible, all disconnections must be logged.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

Log into the database with the postgres user by running the following commands:

$ sudo su - postgres
$ psql -U postgres

As the database administrator, verify the log for a connection audit trail:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
< 2024-02-23 20:25:39.931 UTC postgres 56cfa993.7a72 postgres: >LOG: connection authorized: user=postgres
database=postgres
< 2024-02-23 20:27:45.428 UTC postgres 56cfa993.7a72 postgres: >LOG: AUDIT:
SESSION,1,1,READ,SELECT,,,SELECT current_user;,<none>
< 2024-02-23 20:27:47.988 UTC postgres 56cfa993.7a72 postgres: >LOG: disconnection: session time:
0:00:08.057 user=postgres database=postgres host=[local]

If connections are not logged, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, see the instructions in the supplementary content APPENDIX-C.

If logging is enabled the following configurations must be made to log connections, date/time, username, and
session identifier.

As the database administrator (shown here as "postgres"), edit postgresql.conf by running the following:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters:

log_connections = on
log_disconnections = on
log_line_prefix = '< %m %u %c: >'

Where:
* %m is the time and date
* %u is the username
* %c is the session ID for the connection

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261961
Group Title: SRG-APP-000506-DB-000353
Rule ID: SV-261961r1000888_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011700
Rule Title: PostgreSQL must generate audit records when concurrent logons/connections by the same user from
different workstations occur.

Vulnerability Discussion: For completeness of forensic analysis, it is necessary to track who logs on to
PostgreSQL.

Concurrent connections by the same user from multiple workstations may be valid use of the system; or such
connections may be due to improper circumvention of the requirement to use the Common Access Card (CAC)
for authentication; or they may indicate unauthorized account sharing; or they may be because an account has
been compromised.

If multiple, concurrent logons by a given user can be reliably reconstructed from the log entries for other events
(logons/connections; voluntary and involuntary disconnections), then it is not mandatory to create additional log

entries specifically for this.

Check Content:
As the database administrator, verify that log_connections and log_disconnections are enabled by running the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_connections"
$ psql -c "SHOW log_disconnections"

If either is off, this is a finding.

Verify that log_line_prefix contains sufficient information by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_line_prefix"

If log_line_prefix does not contain at least %m %u %d %c, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters as such:

log_connections = on
log_disconnections = on
log_line_prefix = '< %m %u %d %c: >'

Where:
* %m is the time and date
* %u is the username
* %d is the database
* %c is the session ID for the connection

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261962
Group Title: SRG-APP-000507-DB-000356
Rule ID: SV-261962r1000891_rule
Severity: CAT II

Rule Version (STIG-ID): CD16-00-011800
Rule Title: PostgreSQL must be able to generate audit records when successful accesses to objects occur.

Vulnerability Discussion: Without tracking all or selected types of access to all or selected objects (tables,
views, procedures, functions, etc.), it would be difficult to establish, correlate, and investigate the events relating
to an incident, or identify those responsible for one.

In an SQL environment, types of access include, but are not necessarily limited to:
SELECT
INSERT
UPDATE
DELETE
EXECUTE

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain "pgaudit", this is a finding.

Verify that role, read, write, and ddl auditing are enabled:

$ psql -c "SHOW pgaudit.log"

If the output does not contain role, read, write, and ddl, this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER. To ensure logging is
enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

If logging is enabled, the following configurations must be made to log unsuccessful connections, date/time,
username, and session identifier.

As the database administrator (shown here as "postgres"), edit postgresql.conf:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Edit the following parameters:

log_connections = on
log_line_prefix = '< %m %u %c: >'
pgaudit.log = 'read, write'

Where:
* %m is the time and date
* %u is the username
* %c is the session ID for the connection

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261963
Group Title: SRG-APP-000507-DB-000357
Rule ID: SV-261963r1000894_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-011900
Rule Title: PostgreSQL must generate audit records when unsuccessful accesses to objects occur.

Vulnerability Discussion: Without tracking all or selected types of access to all or selected objects (tables,
views, procedures, functions, etc.), it would be difficult to establish, correlate, and investigate the events relating
to an incident or identify those responsible for one.

In an SQL environment, types of access include, but are not limited to:
SELECT
INSERT
UPDATE
DELETE
EXECUTE

To aid in diagnosis, it is necessary to keep track of failed attempts in addition to the successful ones.

Check Content:
Note: The following instructions use the PGDATA and PGLOG environment variables. Refer to APPENDIX-F
for instructions on configuring PGDATA and APPENDIX-I for PGLOG.

As the database administrator (shown here as "postgres"), create a schema, test_schema, create a table, test_table,
within test_schema, and insert a value:

$ sudo su - postgres
$ psql -c "CREATE SCHEMA test_schema"
$ psql -c "CREATE TABLE test_schema.test_table(id INT)"
$ psql -c "INSERT INTO test_schema.test_table(id) VALUES (0)"

Create a role "bob" and attempt to SELECT, INSERT, UPDATE, and DROP from the test table:

$ psql -c "CREATE ROLE BOB"
$ psql -c "SET ROLE bob; SELECT * FROM test_schema.test_table"

$ psql -c "SET ROLE bob; INSERT INTO test_schema.test_table VALUES (0)"
$ psql -c "SET ROLE bob; UPDATE test_schema.test_table SET id = 1 WHERE id = 0"
$ psql -c "SET ROLE bob; DROP TABLE test_schema.test_table"
$ psql -c "SET ROLE bob; DROP SCHEMA test_schema"

As the database administrator (shown here as "postgres"), review PostgreSQL/database security and audit
settings to verify that audit records are created for unsuccessful attempts at the specified access to the specified
objects:

$ sudo su - postgres
$ cat ${PGDATA?}/${PGLOG?}/<latest_log>
2024-03-30 17:23:41.254 EDT postgres postgres ERROR: permission denied for schema test_schema at
character 15
2024-03-30 17:23:41.254 EDT postgres postgres STATEMENT: SELECT * FROM test_schema.test_table;
2024-03-30 17:23:53.973 EDT postgres postgres ERROR: permission denied for schema test_schema at
character 13
2024-03-30 17:23:53.973 EDT postgres postgres STATEMENT: INSERT INTO test_schema.test_table VALUES
(0);
2024-03-30 17:24:32.647 EDT postgres postgres ERROR: permission denied for schema test_schema at
character 8
2024-03-30 17:24:32.647 EDT postgres postgres STATEMENT: UPDATE test_schema.test_table SET id = 1
WHERE id = 0;
2024-03-30 17:24:46.197 EDT postgres postgres ERROR: permission denied for schema test_schema
2024-03-30 17:24:46.197 EDT postgres postgres STATEMENT: DROP TABLE test_schema.test_table;
2024-03-30 17:24:51.582 EDT postgres postgres ERROR: must be owner of schema test_schema
2024-03-30 17:24:51.582 EDT postgres postgres STATEMENT: DROP SCHEMA test_schema;

If any of the above steps did not create audit records for SELECT, INSERT, UPDATE, and DROP, this is a
finding.

Fix Text: Configure PostgreSQL to produce audit records when unsuccessful attempts to access objects occur.

All errors and denials are logged if logging is enabled. To ensure logging is enabled, see the instructions in the
supplementary content APPENDIX-C.

CCI: CCI-000172

Group ID (Vulid): V-261964
Group Title: SRG-APP-000508-DB-000358
Rule ID: SV-261964r1000897_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-012000
Rule Title: PostgreSQL must generate audit records for all direct access to the database(s).

Vulnerability Discussion: In this context, direct access is any query, command, or call to PostgreSQL that comes
from any source other than the application(s) that it supports. Examples would be the command line or a database
management utility program. The intent is to capture all activity from administrative and nonstandard sources.

Check Content:
As the database administrator, verify pgaudit is enabled by running the following SQL:

$ sudo su - postgres
$ psql -c "SHOW shared_preload_libraries"

If the output does not contain "pgaudit", this is a finding.

Verify that connections and disconnections are being logged by running the following SQL:

$ sudo su - postgres

$ psql -c "SHOW log_connections"
$ psql -c "SHOW log_disconnections"

If the output does not contain "on", this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

PostgreSQL can be configured to audit these requests using pgaudit. Refer to supplementary content
APPENDIX-B for documentation on installing pgaudit.

With pgaudit installed, the following configurations should be made:

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf

Add the following parameters (or edit existing parameters):

pgaudit.log='ddl, role, read, write'
log_connections='on'
log_disconnections='on'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-000172

Group ID (Vulid): V-261965
Group Title: SRG-APP-000514-DB-000382
Rule ID: SV-261965r1000964_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-012200
Rule Title: PostgreSQL must implement NIST FIPS 140-2 or 140-3 validated cryptographic modules to generate
and validate cryptographic hashes.

Vulnerability Discussion: Use of weak or untested encryption algorithms undermines the purposes of using
encryption to protect data. The application must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested and validated.

For detailed information, refer to NIST FIPS Publication 140-3, Security Requirements For Cryptographic
Modules. Note that the product's cryptographic modules must be validated and certified by NIST as FIPS
compliant.

Check Content:
As the system administrator, run the following to ensure FIPS is enabled:

$ cat /proc/sys/crypto/fips_enabled

If fips_enabled is not "1", this is a finding.

Fix Text: Configure OpenSSL to be FIPS compliant.

PostgreSQL uses OpenSSL for cryptographic modules. To configure OpenSSL to be FIPS 140-2 compliant, refer
to the official RHEL Documentation: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-
hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies.

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-002450

Group ID (Vulid): V-261966
Group Title: SRG-APP-000514-DB-000383
Rule ID: SV-261966r1000965_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-012300
Rule Title: PostgreSQL must implement NIST FIPS 140-2 or 140-3 validated cryptographic modules to protect
unclassified information requiring confidentiality and cryptographic protection, in accordance with the data
owners' requirements.

Vulnerability Discussion: Use of weak or untested encryption algorithms undermines the purposes of using
encryption to protect data. The application must implement cryptographic modules adhering to the higher
standards approved by the federal government since this provides assurance they have been tested and validated.

It is the responsibility of the data owner to assess the cryptography requirements in light of applicable federal
laws, Executive Orders, directives, policies, regulations, and standards.

For detailed information, refer to NIST FIPS Publication 140-3, Security Requirements For Cryptographic
Modules. Note that the product's cryptographic modules must be validated and certified by NIST as FIPS
compliant.

Check Content:
As the system administrator, run the following to ensure FIPS is enabled:

$ cat /proc/sys/crypto/fips_enabled

If fips_enabled is not "1", this is a finding.

Fix Text: Configure OpenSSL to be FIPS compliant.

PostgreSQL uses OpenSSL for cryptographic modules. To configure OpenSSL to be FIPS 140-2 compliant, refer
to the official RHEL Documentation: https://access.redhat.com/documentation/en-
us/red_hat_enterprise_linux/8/html/security_hardening/using-the-system-wide-cryptographic-policies_security-
hardening#switching-the-system-to-fips-mode_using-the-system-wide-cryptographic-policies.

For more information on configuring PostgreSQL to use SSL, refer to supplementary content APPENDIX-G.

CCI: CCI-002450

Group ID (Vulid): V-261967
Group Title: SRG-APP-000515-DB-000318
Rule ID: SV-261967r1000906_rule
Severity: CAT II
Rule Version (STIG-ID): CD16-00-012400
Rule Title: PostgreSQL must offload audit data to a separate log management facility; this must be continuous
and in near real time for systems with a network connection to the storage facility and weekly or more often for
standalone systems.

Vulnerability Discussion: Information stored in one location is vulnerable to accidental or incidental deletion or
alteration.

Offloading is a common process in information systems with limited audit storage capacity.

PostgreSQL may write audit records to database tables, to files in the file system, to other kinds of local
repository, or directly to a centralized log management system. Whatever the method used, it must be compatible
with offloading the records to the centralized system.

Check Content:
As the database administrator (shown here as "postgres"), ensure PostgreSQL uses syslog by running the
following SQL:

$ sudo su - postgres
$ psql -c "SHOW log_destination"

If log_destination is not syslog, this is a finding.

As the database administrator, check which log facility is configured by running the following SQL:

$ psql -c "SHOW syslog_facility"

Check with the organization to refer to how syslog facilities are defined in their organization.

If the wrong facility is configured, this is a finding.

If PostgreSQL does not have a continuous network connection to the centralized log management system, and
PostgreSQL audit records are not transferred to the centralized log management system weekly or more often,
this is a finding.

Fix Text: Note: The following instructions use the PGDATA and PGVER environment variables. Refer to
APPENDIX-F for instructions on configuring PGDATA and APPENDIX-H for PGVER.

Configure PostgreSQL or deploy and configure software tools to transfer audit records to a centralized log
management system, continuously and in near real time where a continuous network connection to the log
management system exists, or at least weekly in the absence of such a connection.

To ensure logging is enabled, review supplementary content APPENDIX-C for instructions on enabling logging.

With logging enabled, as the database administrator (shown here as "postgres"), configure the following
parameters in postgresql.conf (the example uses the default values - tailor for environment):

Note: Consult the organization on how syslog facilities are defined in the syslog daemon configuration.

$ sudo su - postgres
$ vi ${PGDATA?}/postgresql.conf
log_destination = 'syslog'
syslog_facility = 'LOCAL0'
syslog_ident = 'postgres'

As the system administrator, reload the server with the new configuration:

$ sudo systemctl reload postgresql-${PGVER?}

CCI: CCI-001851

UNCLASSIFIED

